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Invasive termites and their growing global impact as 
major urban pests
Thomas Chouvenc

While termites play important ecological roles, a fraction of 
species have strong invasive capabilities and represent urban 
pests of economic importance worldwide. Their invasive 
potential is exacerbated by human activities such as maritime 
transport, with privately owned boats serving as key vectors for 
local and global termite dispersal, particularly for Cryptotermes 
and Coptotermes pest species. Land establishment by invasive 
termites can remain undetected for decades, often making 
eradication attempts too late to succeed. Ultimately, invasive 
termite species will likely continue to spread at the global scale, 
and recent new invasive records point toward an 
underestimation of their actual current invasive status.
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Introduction
Termites, with over 3000 described species, represent 
almost a third of the terrestrial arthropod biomass [1–3]
and fulfill critical ecological functions by feeding on 
plant material at different degrees of decomposition [4]. 
However, a fraction of termite species (< 100) have 
status as structural pests, primarily within the Kalo
termitidae (‘drywood’ termites) and Heterotermitidae 
(‘subterranean’ termites) families [1,5•]. As of 2010, the 
damage to structures resulting from termite infestation 
and the associated treatment cost and repair was esti
mated to have an annual economic impact of over $US 
40 B worldwide [6]. The global impact of Coptotermes 
formosanus alone as an invader was since estimated to 

range between $US 20.3 B and $US 30 B [7,8]. In
evitably, the ongoing spread of some of the most in
vasive termite pest species will continue to impose a 
growing economic impact [9].

As eusocial insects, termite colonies have a distinct re
productive division of labor, where a queen and a king 
often monopolize the reproductive output of the colony, 
while sterile workers and soldiers focus on resource ac
quisition and defense of the family unit; however, many 
termite lineages have complex breeding structures [10]. 
Once a colony has reached maturity, it produces winged 
individuals (alates) that disperse over short distances and 
establish new colonies in favorable nesting sites. While 
rare, and only for a few termite species, a small group of 
isolated termites may survive and reproduce as a po
tentially effective invasive propagule [11]. In addition, 
for a colony to survive human-mediated dispersal events, 
it requires a set of traits that varies among invaders [12]. 
Ultimately, social insect species that possess such in
vasive potential have a negative impact, both ecological 
and economic, that can be disproportionate compared to 
other species [13,14].

For termites specifically, 28 species have been recorded 
as successful invaders worldwide [15]. Arguably, the 
propensity of some species to thrive within highly ur
banized environments and survive prolonged periods of 
time on human-made maritime vessels has dramatically 
accelerated their extensive spread across the world, 
particularly for Cryptotermes, Incisitermes, Coptotermes, Re
ticulitermes and Heterotermes [16–18]. Combined, these 
five genera represent the bulk of invasive termite spe
cies that are the primary cause of structural damage, 
though some species within other termite genera either 
have significant pest status restricted within their native 
area or have relatively lower invasive potential compared 
to the above genera [15].

In the past five decades, such invasive termite species 
have not only been recorded in numerous new locations 
around the world but have also continued to expand 
their distribution range in locations where they are al
ready established. The predicted dispersal potential 
[19•] of these invaders raises concerns about their asso
ciated economic impact in the near future, which will 
only increase with their continued spread. Here, I dis
cuss the factors that may heighten the global impact of 
such invasive termite pest species in the decades 
to come.
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Termite dispersals: past and present
Historical transoceanic dispersals
In a series of recent molecular phylogenetic studies 
[4,20–22], it was demonstrated that the current dis
tribution of extant termite lineages is, in part, the result 
of repeated transoceanic dispersal events over the past 
40 million years. Entire (or partial) termite colonies in
festing a piece of wood may have rafted over oceans after 
environmentally catastrophic events (landslides into 
rivers/oceans, tsunamis, cyclones/hurricanes). Therefore, 
termite dispersals inherently occurred before global ur
banization and termites may be predisposed to survive 
extended dispersal events on floating rafts [4,21,23]. 
Arguably, while successful transoceanic dispersals over 
geologic time were critical for the historical biogeo
graphy of termite lineages, they were relatively rare [4]. 
In modern times, fabricated maritime vessels create a 
situation where boats readily serve as artificial rafts for 
species with such predispositions, exponentially enhan
cing their dispersal abilities. Not only is transportation 
time functionally reduced by modern boats, but critical 
mass for rafting capacity may have changed from a 
handful per year (pre-human transportation times) to 
several millions per year (current times).

Urban adaptation
Termite species that cannot thrive within urbanized 
environments have little propensity to become structural 
pests and have little chance of being accidentally picked 
up and transported away [24]. On the contrary, invasive 
termite pest species have a peculiar affinity to associate 
themselves with human activity [1,12], and human po
pulation density is a relevant factor in using prediction 
models to determine future establishment potentials 
[19•]. In addition, urban microclimates (winter heating, 
irrigation, urban gardens, air-conditioning, urban tree 
canopy, etc.) can provide suitable establishment sites for 
some termite species despite being outside of their ex
pected climatic range [25–28].

Drywood termites within Cryptotermes and Incisitermes 
(Kalotermitidae) can establish colonies in single pieces 
of wood not exposed to water within human goods and 
structures, such as furniture, which can be readily re
located when a household moves to a new residence 
[16]. The inherent biology of such species makes them 
readily capable of hitchhiking on human movement, 
undetected, and surviving in dry, air-conditioned en
vironments [29–31].

For subterranean termites (Heterotermitidae) such as 
Reticulitermes and Heterotermes, their ability to forage in 
urban environments over long distances underground, 
with the establishment of secondary reproductives at 
multiple feeding sites, makes them capable of surviving 
with continued reproductive capacity even when a por
tion of the colony is separated and moved to a new 

location [32]. Infested landscaping lumber or other large 
wood items with relatively small portions of a colony can 
therefore serve as effective propagules across urban en
vironments [11,33,34•].

Coptotermes formosanus and Co. gestroi both thrive as major 
invasive structural and arboreal pests in urban and 
periurban environments [35•], as mature colonies rely on 
inundative dispersal flights to spread locally [36]. 
Through sheer numbers (Coptotermes synchronized dis
persal flight events can involve millions of individuals), 
incipient colonies can establish at numerous nesting 
sites [37–39], including within commercial commodities 
shipments (horticultural trade) and recreational vehicles 
and boats [17,40•]. As a result, privately owned leisure 
boats are particularly effective vehicles for over-water 
dispersal of Coptotermes [41,42•] (Figure 1). Furthermore, 
and critical to their invasive success, the dispersal phe
nology of Coptotermes can minimize the Allee effect even 
when a single colony is the source of a new invasion from 
a boat [42•,43•]. Functionally, through a numbers game 
during inundative dispersal flights, local invasive popu
lations can minimize the risk of a genetic bottleneck and 
maintain high rates of heterozygocity. By successfully 
establishing a sufficient number of colonies that cumu
latively maintain the initial genetic diversity from the 
original invasive propagule, the population as a whole 
can tolerate the weeding out of colonies that would be 
subjected to the deleterious effect of inbreeding de
pression [39,43•].

Boat association as the main driver for global spread of 
termite invaders
It is common to detect new termite introductions at or 
adjacent to major port cities [18,42•]. The historical 
transfer of infested military equipment by boats has 
likely facilitated the spread of termite invaders around 
coastal military bases in various parts of the world 
[31,43–45]. Commodity trade and shipping is also a po
tential invasion route for termites, as infested material is 
recurrently intercepted at ports of entry [18]. However, 
the movement of privately owned recreational/leisure 
boats (yachts, luxury boats, small maritime-capable ves
sels) is not subjected to rigorous inspections for termite 
infestation, allowing for boat infestations to perdure for 
years, arguably making the private recreational boating 
industry one of the main drivers for the global dispersal 
of termite invaders (Figure 2).

Cryptotermes and Coptotermes, in particular, can readily infest 
boats during dispersal flight events and complete their life 
cycle within a handful of years within the boat itself 
[16,42•]. The growing colony becomes a potential propa
gule that can spread to various parts of the world and be a 
source of dispersal flights toward nearby coastal areas, as 
alates are attracted to urban lights at sunset [36,46]. Once 
established on land, the termite population grows in density 
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over decades, increasing the chances of these established 
termite colonies becoming the source of new boat infesta
tions within local marinas/canals [17]. Such infested boats 
can then spread the termites further through serial 
bridgehead introduction events [18,34•,43•]. As a result, 
with few exceptions, new records of establishment for 
Cryptotermes and Coptotermes are first restricted to coastal 
areas [29,40•], before expanding further inland over time 
[35•]. Unfortunately, while privately owned boats are now 
known to be a primary cause for invasive termite dispersal, 
they remain poorly documented or reported upon discovery 
[17,42•], leading to a potential gross underestimation of the 
actual boat infestation rate in most areas at risk.

The continuous growth of the global private yacht and 
leisure boat industry implies an ongoing increase in pro
pagule pressure for termite species that can use such 
maritime vessels as a gateway to transoceanic dispersals. 
Many tropical regions around the world are favored desti
nations for leisure boating activities, and it is therefore 
expected that Cr. brevis, Co. formosanus, and Co. gestroi, 
among a few other species, will continue to spread 

extensively over time. All three species are solidly estab
lished in South Florida, often referred to as the ‘yachting 
capital of the world.’ All three species have been ex
tensively established in urban south Florida [47], and pri
vately owned vessels are commonly treated for one of 
these three species [17,42•]. One may argue that while 
Florida has long been a disproportionate recipient of in
vasive social insects [48,49], it is now in a prime position to 
serve as a bridgehead for enhanced dispersal for all three 
termite species to the rest of the world. Locations with 
similar leisure boat activities around the globe are therefore 
at equal risk of receiving such propagules and ultimately 
become bridgehead locations themselves (Figure 2).

Detection delay, local awareness, and 
expectations for eradication programs
There is often an extended interval between the initial 
time of arrival of a termite invader and the time of dis
covery of established populations. It often takes years, 
sometimes decades, before an established species can be 
noticed and reported. The lag in the detection of 

Figure 1  

Current Opinion in Insect Science

Example of a small privately owned maritime vessel infested by a Coptotermes gestroi colony, moored in a Florida canal. (a) Visual of the boat for 
scale. (b) Evidence of a recent dispersal flight within the boat. (c) Subterranean termite mud construction showing active infestation of the boat by a 
colony. (d) Outline of foraging galleries underneath the surface of the cabin material. 
Image credit: Hoffer Pest Solutions, Inc, with permission.  
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invasive termites can be especially long for several rea
sons. First, their cryptic nature makes them difficult to 
detect until extensive damage is discovered. Second, the 
life cycle of a termite colony is at least 4–5 years, so to 
complete dispersal flights and locally establish new co
lonies at sufficient densities to be detected can take 
decades. Finally, the initial lack of local expertise with 
such invaders (identification and control) may further 
aggravate such delay.

Termite invasions, such as by Coptotermes, can be me
taphorically compared to extremely slow-motioned and 
silent hurricanes; they come by sea as a landfall, im
pacting urbanized coastline areas at first, and then ex
pand further inland, potentially beyond urban areas, 
raising a wake of structural damage in their path, over 
several decades. The delay of the impact of invasive 
termites comes with an absence sense of urgency. Only a 
few localized communities are impacted at first and by 
the time the impact becomes noticeable and tangible, it 
is often too late to contain it. As a result, reactive ‘era
dication’ program initiatives by local administrations 
usually come with high expectations but are un
fortunately often set up far too late for feasible con
tainment or control. It is therefore rather safe to assume 
that once a termite invader has been established, it is 
here to stay (and continue to expand its distribution), as 
is often observed for other invasive social insects [50].

One of the tools to help awareness about the spread of 
invasive termites and early detection is the establish
ment of monitoring/identification services in the form of 
‘citizen science’ programs, as offered in Taiwan [51] and 
in Florida [47], which accelerate the detection of in
vasive termites beyond their existing documented range. 
Such programs can help prepare local governments and 
pest control providers to rapidly adapt and mitigate the 
evolving termite threat in their local communities.

Invasive termites and hybridization
Since 2010, observations of heterospecific pairing behavior 
in Florida of Co. gestroi and Co. formosanus during simulta
neous dispersal flights raised concerns about the potential 
for hybridization between two of the most destructive ter
mite species in the world [37,52,53]. The recent in
dependent discoveries of F1 and F2 Coptotermes hybrid 
alates in Taiwan [54] and F1 alates in Florida [55] demon
strate the possibility of gene flow between the two species 
in urbanized areas. Hybrid Coptotermes temperature toler
ance encompasses the range of both parental species [56], 
suggesting a wide global distribution potential. While the 
consequences of the discovery of hybrid Coptotermes in the 
field remain to be seen and may be merely a distracting 
anomaly for the time being, the possibility of greater evo
lutionary implications in the long term should not be ig
nored. Through repeated trial-errors of heterospecific 
mating events, it may only be a matter of time before viable 

Figure 2  
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Invasion scenario for Coptotermes sp. within a residential area, where boat access is possible via canals connected to the ocean nearby. (a) Arrival of 
an infested boat. (b) Dispersal event of alates from the infested boat. (c) Initial settlement of a few colonies within the surrounding coastal area, 
undetected and able to complete their life cycle to maturity. (d) Colony density increases over time within the area, including the occurrence of 
established colonies in locally moored boats. Some of these infested vessels may depart to new destinations and repeat the invasion cycle in a new 
locality. It may take more than a decade for a locality to switch from being ‘recipient’ to being ‘exporter’ of a given invasive termites species.  

4 Pests and resistance 

www.sciencedirect.com Current Opinion in Insect Science 2025, 69:101368



and fertile hybrid alates establish on a boat and make their 
way out of Florida or Taiwan [55].

Conclusion
Unequivocally, the ongoing global spread of invasive 
termite pest species is slowly leading to a partial 
homogenization of urban termite pests [19•]. While cli
matic conditions may be a primary restrictive factor for 
introduced species survival in non-native areas, the on
going urbanization-associated changes at the local and 
global scale are conducive to augmented termite damage 
potential in the near future [19•,57]. The economic 
impact of invasive termites has been rising over the 
decades and will continue to intensify as they continue 
to establish in new locations, via human-mediated 
transportation, primarily by privately owned leisure 
boats. However, establishing local awareness programs 
in areas with known invasive termite pest populations 
could facilitate early detection of boat infestations and 
minimize the occurrence of boat-mediated dispersal 
events.

Once established in new locations, the management of 
termite pest species can be most challenging. The socio- 
political context of newly invaded areas varies greatly, 
and local regulatory agencies may enable or prevent the 
development of, and access to, management tools [58]. 
In addition, the inevitable delay of attempted control of 
termite invaders on impacted communities often comes 
as ‘too little too late’, making eradication programs un
likely to succeed. The long series of recent establish
ment records of termite invaders supports that we are 
only ‘playing catch-up’ with the ongoing reality of global 
termite dispersal [25,26,28–31,47,59–65]. For many lo
cations around the world, the question is therefore not 
‘if’ invasive termites will eventually establish, but rather 
‘when’ they will establish — if they have not already.
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