Received: 15 January 2024

(wileyonlinelibrary.com) DOI 10.1002/jsfa.13771

Published online in Wiley Online Library

Check for updates

CI

Can consumers avoid mislabelling? Genetic species identification provides recommendations for shrimp/prawn products

Félix Gil,[†] Beatriz Beroiz,[†] Isabel Ballesteros and Jose Luis Horreo^{*} •

Abstract

BACKGROUND: Crustaceans of the superfamily Penaeoidea (e.g., shrimps and prawns) are among the most commercially available aquatic products worldwide. However, there are few studies regarding not only the presence but also the characteristics of mislabelling in these food products. Such information would be helpful for consumers in order to avoid the typical problems associated with mislabelling (e.g., health and economic issues). For this reason, this work considers Penaeoidea mislabelling by comparing different products (frozen, fresh, boiled), and sources (hypermarkets, supermarkets and fishmongers) from Spain (Europe).

RESULTS: A total of 94 samples from 55 different products were collected, representing 19 different species from 13 genera. Mitochondrial DNA (COI gene) was amplified, revealing mislabelling in almost 30% of supermarket products and almost exclusively found in frozen samples (95% of the total) regardless of its price. In addition, products from the Pacific Ocean seem to be particularly susceptible to mislabelling.

CONCLUSIONS: All in all, recommendations for the consumer in order to avoid mislabelling of prawns include purchasing them fresh from fishmongers; aquaculture products must not be avoided. This study represents, to our knowledge, the first attempt to provide recommendations to consumers based on DNA analyses in order to avoid mislabelling in food products. Further research is therefore required to provide such recommendations in different food products, particularly those that are processed, packaged and/or frozen.

© 2024 The Author(s). *Journal of the Science of Food and Agriculture* published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Keywords: COI; customer recommendations; DNA barcoding; food; mislabelling; prawn; shrimp

INTRODUCTION

Historically, crustaceans of the superfamily Penaeoidea (such as shrimps and prawns) have been among the most commercially important aquatic products worldwide. Currently, according to the United Nations Food and Agriculture Organization (FAO), the majority of their catches and production are destined for markets in the high-income regions of Europe, North America and Japan.¹ Shrimp consumption in the European Union (EU) is 1.47 kg per capita per year (49% wild and 51% farmed), with warm water shrimp and Argentine red shrimp being the most commonly consumed species.² The supply of this product in the EU is to a large extent dependent on imports, mainly from Ecuador, India, Vietnam, Thailand, Indonesia, Argentina, and Greenland.^{2,3}

Taking these factors into account, the labelling rules needed to trace seafood and protect consumers' rights and health are essential. In this regard, seafood labelling is regulated in the EU, and the law stipulates that, among other things, seafood products must be labelled with the full scientific name of the species together with the common name (Regulation EU No. 1379/2013). However, despite efforts to regulate and ensure the traceability of seafood

products, recent studies have revealed cases of mislabelling, showing that the seafood chain is particularly vulnerable to fraud, mainly due to species substitution and mislabelling.⁴ Guardone *et al.*⁵ conducted a study at the Border Inspection Post of Livorno-Pisa (Italy) on the non-compliance of labelling of fishery products imported from non-European countries. They found that 22.5% of the products analysed were incorrectly labelled with the highest mislabelling rate observed for cephalopods (43.8%), followed by crustaceans (17.0%) and fish (14.0%).

Seafood fraud (mislabelling being one of the main incidents involved on it⁶) can occur for a variety of reasons, from unintentional inaccurate identification or misunderstanding of

⁺ These authors contributed equally to this work.

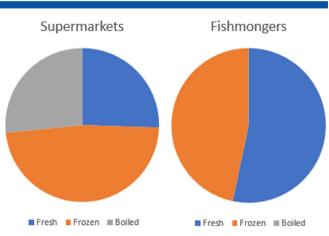
© 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

^{*} Correspondence to: JL Horreo, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences. Complutense University of Madrid. C/Jose Antonio Novais 12, CP28040, Madrid, Spain, E-mail: jhorreo@ucm.es

Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain

regulations to deliberate deception to increase profits, or even hiding illegally caught species by falsely pretending they are cultured. Therefore, it is not only important for consumers from an economic and human health perspective,⁷ but also for species conservation/overfishing.⁸

www.soci.org


For the identification of mislabelling of seafood products, a fundamental first step is to correctly identify the species. This can be difficult using morphology-based approaches, especially in the case of Penaeoidea superfamily, as morphological differences between some species can be subtle, particularly in closely related species that differ only by minor genital differences. In comparison, DNA-based techniques such as the use of DNA barcode markers (recently reviewed in Fernandes et al.⁹ and Antil et al.¹⁰), which can be used for a wide variety of food matrices, have proven to be very useful for correct species identification applied to seafood authentication.¹¹ Among the molecular markers used, DNA sequencing of the cytochrome c oxidase I (COI) mitochondrial gene (DNA barcoding) has provided numerous successful examples demonstrating its reliability for the identification of economic aquatic species including penaeid species.¹²⁻¹⁴ One of the advantages of using DNA barcoding over morphological characterization is the identification of species after processing of fish and shellfish.¹⁵ On the negative side, a major drawback is the dependence on the availability of complete and robust databases, such as GeneBank or Bold System, and the availability of species-specific reference sequences in these databases.⁹ Different surveys based on the DNA barcoding approach have been conducted in Spanish markets^{16,17} and in restaurants¹⁸ to detect mislabelling and fraudulent species substitutions in fish products. However, barcoding studies that focus on the detection of mislabelling of commercial shrimp products are still limited, with previous work in commercial prawns/shrimps showing between 22% and 66% of mislabelling in different markets.¹⁹⁻²⁴

As commented earlier, there are few works describing not only the presence but also the characteristics of mislabelling in shrimps and prawns to date²²⁻²⁵; however, there are no specific recommendations for consumers that have been done based on them. For this reason, we have collected and barcoded a high number of shrimp/prawn samples from different establishments (hypermarkets, supermarkets and fishmongers) to assess the degree of mislabelling in Spanish food services. In addition to mislabelling detection, the aim of the study was to examine potential links between such mislabelling and certain products, in order to be able to provide useful recommendations to consumers so that they can avoid such practices, which unfortunately is not a common information presented in mislabelling bibliography.

MATERIAL AND METHODS

Sampling

A total of 55 commercial products, including fresh, frozen, and boiled (Fig. 1), were obtained over a 1-year period (October 2021 to June 2022) from different supermarkets (ten) and fish-mongers (three) in the Madrid area (Madrid centre and surround-ings) and Toledo (Table 1), Spain. Samples were randomly taken from whatever was available at the time of sampling. The origin of some of these commercial products (n = 6) was aquaculture. Two different individuals (samples) were taken from each product. Fresh samples were immediately frozen and stored at -20° C until laboratory analysis. Table 1 lists all samples recording to declared commercial and scientific name, capture zone (FAO), type of product and price. Labels showed 19 products at species

Figure 1. Proportions of fresh, frozen, or boiled samples obtained from supermarkets (left) or fishmongers (right).

level and four products at genus level (Table 1), according to the package labels.

DNA extraction, PCR amplification and DNA sequencing

A small piece of tissue (< 0.1 mg) from the tail was used for genomic DNA isolation. Genomic DNA was extracted using NZY Plant/ Fungi Isolation kit (Nzytech, Lisboa, Portugal) and eluted in 50 µL. A primer pair (LCO 1490: 5'-GGTCAACAAATCATAAAGATATTGG-3' and HCO 2198: 5'-TAAACTTCAGGGTGACCAAAAAATCA-3')²⁶ amplifying a fragment of almost 700 bp of the COI was employed for DNA amplifications. Polymerase chain reaction (PCR) conditions included a total volume of 20 µL, containing 2 µL of DNA, 10 µL of NZYTaq II 2x master mix (Nzytech), 0.8 µL of each primer (5 µmol/L) and 0.01% BSA (bovine serum albumin). PCR programme consisted of an initial denaturation step for 3 min at 95 °C followed by 35 cycles of denaturation for 90 s at 94 °C with an annealing for 25 s at 45 °C and an extension for 30 s and a final extension step for 1 min at 72 °C. PCR products were analysed on agarose gels (1.5%) including negative controls, and sequenced on an ABI 3730xl DNA Analyzer (Applied Biosystems, Waltham, MA, USA) at the UCM Genomic Unit.

Data and statistical analyses

Sequences were edited with MEGA 11 software²⁷ and compared against the GenBank database at the National Centre for Biotechnology Information (NCBI) using the Basic Local Alignment Search Tool (BLAST). The identification obtained by barcoding was compared with the species information collected at establishments/labels. To assign the sample identification, three values of percentage sequence identity, greater than 98%, 99% and 100% of the reference specimen to the query sequence were considered. Samples were classified as mislabelled if the species declared for the product did not match the species identified by barcoding.

We tested whether there was a statistical correlation between the average price (euro per kilogram, €/kg) of the products and the percentage of mislabelling by using Mann–Whitney test with PAST 4.0 software.²⁸

RESULTS AND DISCUSSION

In total, 94 samples from 55 products (meaning 1.71 samples per products) yielded successful COI PCR amplification and were therefore useful for the study of mislabelling (Table 1). Within

F Gil et al.

www.soci.org

Table 1. Shrimp and prawn commercial products obtained in the Madrid area (Madrid centre and surroundings) and Toledo are shown in the table as products and sample numbers, scientific name of the label (product label), fishing area (FAO or aquaculture), type of product (fresh, frozen and boiled), price (euro per kilogram), shop [supermarkets (S) and fishmonger (F)]. The species identified (COI species) by BLAST (https://www.ncbi.nlm.nih.gov/BLAST), and the percentage of identification (% Ident) between the amplified and the most similar sequence existing in GeneBank. The presence of mislabelling was annotated with Yes or No in column Mislab.

Product	Sample	Label	Area	Product	Price	Shop	COI species	% Ident	Mislab
St01	Sa01	Parapenaeopsis stylifera	Indian Ocean (FAO n° 51)	Frozen	12.5	S	Mierspenaeopsis hardwickii	99.50	Yes
St02	Sa02	Palaemon serratus	Atlantic Ocean (FAO n° 27)	Fresh	69.8	F	Palaemon serratus	98.38	No
St02	Sa03	Palaemon serratus	Atlantic Ocean (FAO n° 27)	Fresh	69.8	F	Palaemon serratus	100	No
St03	Sa04	Parapenaeus Iongirostris	Atlantic Ocean (FAO n° 34)	Frozen	21.9	F	Parapenaeus Iongirostris	99.68	No
St03	Sa05	Parapenaeus longirostris	Atlantic Ocean (FAO n° 34)	Frozen	21.9	F	Parapenaeus longirostris	99.84	No
St04	Sa06	Parapenaeus longirostris	Atlantic Ocean (FAO n° 34)	Fresh	27.9	F	Parapenaeus longirostris	99.35	No
St04	Sa07	Parapenaeus Iongirostris	Atlantic Ocean (FAO n° 34)	Fresh	27.9	F	Parapenaeus longirostris	99.66	No
St05	Sa08	Parapenaeus Iongirostris	Mediterranean Sea (FAO n°37.1)	Fresh	59.9	F	Parapenaeus longirostris	99.83	No
St05	Sa09	Parapenaeus Iongirostris	Mediterranean Sea (FAO n°37.1)	Fresh	59.9	F	Parapenaeus longirostris	100	No
St06	Sa10	Litopenaeus vannamei	Aquaculture	Fresh	15.9	F	Pennaeus vannamei	100	No
St06	Sa11	Litopenaeus vannamei	Aquaculture	Fresh	15.9	F	Pennaeus vannamei	100	No
St07	Sa12	Pleoticus muelleri	Atlantic Ocean (FAO n°4)	Frozen	22.95	S	Pleoticus muelleri	98.89	No
St07	Sa13	Pleoticus muelleri	Atlantic Ocean (FAO n°4)	Frozen	22.95	S	Pleoticus muelleri	99	No
St08	Sa14	Pandalus borealis	Atlantic Ocean (northeast)	Frozen	15.5	S	Pandalus borealis	99.67	No
St08	Sa15	Pandalus borealis	Atlantic Ocean (northeast)	Frozen	15.5	S	Pandalus borealis	100	No
St09	Sa16	Plesiopenaeus edwardsianus	Pacific Ocean	Frozen	27.5	S	Palaemon varians	99.84	Yes
St10	Sa17	Parapenaeus Iongirostris	Atlantic Ocean (FAO n° 34)	Fresh	33.17	S	Parapenaeus Iongirostris	100	No
St10	Sa18	Parapenaeus Iongirostris	Atlantic Ocean (FAO n° 34)	Fresh	33.17	S	Parapenaeus Iongirostris	99.68	No
St11	Sa19	Pleoticus muelleri	Atlantic Ocean (southwest)	Fresh	12.99	S	Pleoticus muelleri	100	No
St11	Sa20	Pleoticus muelleri	Atlantic Ocean (southwest)	Fresh	12.99	S	Pleoticus muelleri	100	No
St12	Sa21	Penaeus vannamei	Honduras/Nicaragua	Fresh	8.95	S	Penaeus vannamei	99.69	No
St12	Sa22	Penaeus vannamei	Honduras/Nicaragua	Fresh	8.95	S	Penaeus vannamei	98.37	No
St13	Sa23	Parapenaeus Iongirostris	Mediterranean Sea	Fresh	29.95	S	Parapenaeus Iongirostris	100	No
St13	Sa24	Parapenaeus Iongirostris	Mediterranean Sea	Fresh	29.95	S	Parapenaeus Iongirostris	98.89	No
St14	Sa25	Parapenaeopsis stylifera	Indian Ocean	Frozen	12.67	S	Mierspenaeopsis hardwickii	98.30	Yes
St15	Sa26	Parapenaeopsis spp	Indian Ocean	Frozen	16.54	S	Metapenaeus brevicornis	99.83	Yes
St15	Sa27	Parapenaeopsis spp	Indian Ocean	Frozen	16.54	S	Metapenaeus brevicornis	99.32	Yes
St16	Sa28	Solenocera melantho	Pacific Ocean	Frozen	-	S	Solenocera melantho	99.36	No
St17	Sa29	Pleoticus muelleri	Atlantic Ocean (southwest)	Frozen	19.95	F	Pleoticus muelleri	99.05	No

Table 1.	Continued	ł							
								%	
Product	Sample	Label	Area	Product	Price	Shop	COI species	Ident	Mislab
St17	Sa30	Pleoticus muelleri	Atlantic Ocean (southwest)	Frozen	19.95	F	Pleoticus muelleri	99.37	No
St18	Sa31	Trachypenaeus spp.	Pacific Ocean (FAO n°61)	Frozen	17.25	S	Metapenaeopsis barbata	99.87	Yes
St18	Sa32	Trachypenaeus spp.	Pacific Ocean (FAO n°61)	Frozen	17.25	S	Pleoticus muelleri	99.08	Yes
St19	Sa33	Palaemonetes varians	Atlantic Ocean (northeast)	Boiled	8.99	S	Palaemon varians	99.84	No
St19	Sa34	Palaemonetes varians	Atlantic Ocean (northeast)	Boiled	8.99	S	Palaemon varians	99.84	No
St20	Sa35	Nephrops norvegicus	Atlantic Ocean (east)	Fresh	11.89	S	Penaeus sp.	99.47	Yes
St21	Sa36	Litopenaeus vannamei	Venezuela	Fresh	7.95	S	Litopenaeus vannamei	99.84	No
St21	Sa37	Litopenaeus vannamei	Venezuela	Fresh	7.95	S	Litopenaeus vannamei	99.84	No
St22	Sa38	Litopenaeus vannamei	Ecuador	Fresh	9.95	S	Litopenaeus vannamei	99.01	No
St22	Sa39	Litopenaeus vannamei	Ecuador	Fresh	9.95	S	Litopenaeus vannamei	99.18	No
St23	Sa40	Parapenaeopsis stylifera	Indian Ocean (FAO n°51, 57)	Frozen	12.67	S	Parapenaeopsis hardwickii	100	Yes
St24	Sa41	Solenocera melantho	FAO n°61	Frozen	15.68	S	Solenocera crassicornis	100	Yes
St24	Sa42	Solenocera melantho	FAO n°61	Frozen	15.68	S	Parapenaeus fissuroides	99.40	Yes
St25	Sa43	Pandalus borealis	Atlantic Ocean (north)	Frozen	14.67	S	Pandalus borealis	99.84	No
St25	Sa44	Pandalus borealis	Atlantic Ocean (north)	Frozen	14.67	S	Pandalus borealis	100	No
St26	Sa45	Pleoticus muelleri	Atlantic Ocean (FAO n° 41)	Frozen	20.84	S	Pleoticus muelleri	98.50	No
St27	Sa46	Penaeus vannamei	Aquaculture (Ecuador)	Frozen	8.69	S	Penaeus vannamei	100	No
St27	Sa47	Penaeus vannamei	Aquaculture (Ecuador)	Frozen	8.69	S	Penaeus vannamei	98.77	No
St28	Sa48	Pandalus borealis	Atlantic Ocean (north)	Frozen	14.6	S	Pandalus borealis	99.83	No
St28	Sa49	Pandalus borealis	Atlantic Ocean (north)	Frozen	14.6	S	Pandalus borealis	99.84	No
St29	Sa50	Penaeus vannamei	Aquaculture (Ecuador)	Fresh	12	S	Penaeus vannamei	100	No
St29	Sa51	Penaeus vannamei	Aquaculture (Ecuador)	Fresh	12	S	Penaeus vannamei	100	No
St30	Sa52	Penaeus vannamei	Aquaculture (Nicaragua/Ecuador)	Boiled	9.6	S	Pennaeus vannamei	99.84	No
St30	Sa53	Penaeus vannamei	Aquaculture (Nicaragua/Ecuador)	Boiled	9.6	S	Pennaeus vannamei	99.68	No
St31	Sa54	Penaeus spp	Aquaculture (Ecuador)	Boiled	12	S	Penaeus vannamei	99.50	No
St32	Sa55	Penaeus longirostris	Atlantic Ocean	Fresh	9	S	Penaeus longirostris	100	No
St32	Sa56	Penaeus longirostris	Atlantic Ocean	Fresh	9	S	Penaeus longirostris	99.33	No
St33	Sa57	Pleoticus muelleri	Atlantic Ocean (FAO n° 41)	Fresh	10.50	S	Pleoticus muelleri	99.08	No
St34	Sa58	Penaeus brevirostris	Atlantic Ocean (FAO n° 77)	Fresh	9.99	S	Farfantepenaeus brevirostris	100	No
St34	Sa59	Penaeus brevirostris	Atlantic Ocean (FAO n° 77)	Fresh	9.99	S	Farfantepenaeus brevirostris	98.97	No
St35	Sa60	Parapenaeus longirostris	Atlantic Ocean (FAO n° 35)	Fresh	13.95	S	Parapenaeus longirostris	100	No
St35	Sa61	Parapenaeus longirostris	Atlantic Ocean (FAO n° 35)	Fresh	13.95	S	Parapenaeus longirostris	100	No
St36	Sa62	Palaemon serratus	Celtic Sea	Boiled	49.95	S	Palaemon serratus	98.58	No
St36	Sa63	Palaemon serratus	Celtic Sea	Boiled	49.95	S	Palaemon serratus	99.20	No
St37	Sa64	Aristeus alcocki	Indian Ocean (west)	Frozen	29.4	S	Aristeus alcocki	100	No
St38	Sa65	Solenocera melantho	China	Frozen	12.5	S	Solenocera melantho	99.72	No
St38	Sa66	Solenocera melantho	China	Frozen	12.5	S	Pleoticus robustus	99.81	Yes

4

www.soci.org

Table 1.	Continued	I							
								%	
Product	Sample	Label	Area	Product	Price	Shop	COI species	Ident	Mislab
St39	Sa67	Penaeus vannamei	South America	Frozen	15.3	S	Penaeus vannamei	100	No
St39	Sa68	Penaeus vannamei	South America	Frozen	15.3	S	Pleoticus muelleri	99.84	Yes
St40	Sa69	Parapenaeus Iongirostris	Atlantic Ocean (central)	Frozen	13.95	S	Parapenaeus Iongirostris	99.84	No
St40	Sa70	Parapenaeus Iongirostris	Atlantic Ocean (central)	Frozen	13.95	S	Parapenaeus longirostris	99.84	No
St41	Sa71	Parapenaeus sp.	Atlantic Ocean (central)	Frozen	29.95	S	Parapenaeus longirostris	99.84	No
St42	Sa72	Penaeus notialis	Mediterranean Sea	Frozen	19.98	S	Fantapenaeus aztecus	100	Yes
St43	Sa73	Penaeus notialis	Mediterranean Sea	Frozen	20.98	S	Fantapenaeus aztecus	100	Yes
St44	Sa74	Penaeus vannamei	Ecuador	Frozen	8.98	S	Litopenaeus vannamei	100	No
St45	Sa75	Melicertus latisulcatus	Indian Ocean (west)	Frozen	23	S	Melicertus latisulcatus	99.20	No
St45	Sa76	Melicertus latisulcatus	Indian Ocean (west)	Frozen	23	S	Melicertus latisulcatus	100	No
St46	Sa77	Penaeus monodon	Madagascar	Boiled	29.95	S	Penaeus monodon	99.69	No
St46	Sa78	Penaeus monodon	Madagascar	Boiled	29.95	S	Penaeus monodon	99.49	No
St47	Sa79	Penaeus latiscultatus	Indian Ocean (west)	Boiled	26.95	S	Melicertus latisulcatus	98.78	No
St48	Sa80	Penaeus kerathurus	lonian Sea	Fresh	54.95	S	Penaeus kerathurus	99.79	No
St48	Sa81	Penaeus kerathurus	lonian Sea	Fresh	54.95	S	Penaeus kerathurus	99.79	No
St49	Sa82	Parapenaeopsis stylifera	Indian Ocean (FAO n°51, 57)	Frozen	11.99	S	Parapenaeopsis hardwickii	99.53	Yes
St49	Sa83	Parapenaeopsis stylifera	Indian Ocean (FAO n°51, 57)	Frozen	11.99	S	Parapenaeopsis hardwickii	99.69	Yes
St50	Sa84	Aristeus alcocki	Indian Ocean (FAO n°51, 57)	Frozen	17.99	S	Penaeus indicus	98.75	Yes
St50	Sa85	Aristeus alcocki	Indian Ocean (FAO n°51, 57)	Frozen	17.99	S	Mierspenaeopsis hardwickii	99.20	Yes
St51	Sa86	Plesiopenaeus edwardsianus	_	Frozen	24.99	S	Litopenaeus vannamei	99	Yes
St51	Sa87	Plesiopenaeus edwardsianus	_	Frozen	24.99	S	Aristeomorpha foliacea	99.66	Yes
St52	Sa88	Penaeus vannamei	South America, aquaculture	Frozen	9.99	S	Penaeus vannamei	99.53	No
St52	Sa89	Penaeus vannamei	South America, aquaculture	Frozen	9.99	S	Penaeus vannamei	99.07	No
St53	Sa90	Penaeus vannamei	South America, aquaculture	Frozen	15.99	S	Penaeus vannamei	99.54	No
St53	Sa91	Penaeus vannamei	South America, aquaculture	Frozen	15.99	S	Penaeus vannamei	99.53	No
St54	Sa92	Parapenaeus Iongirostris	Senegal	Frozen	30	F	Parapenaeus Iongirostris	100	No
St55	Sa93	Penaeus vannamei	Ecuador	Frozen	12	F	Penaeus vannamei	99.69	No
St55	Sa94	Penaeus vannamei	Ecuador	Frozen	12	F	Penaeus vannamei	99.53	No

them, 23 different labels were found, 19 of them declaring species level and four only at genus level, which means around four samples per species or genus. The samples collected belong to 13 different genera in total (including the genus of the samples at species level and at genus level): *Aristeus, Litopenaeus, Melicertus, Palaemon, Palaemonetes, Pandalus, Parapenaeopsis, Parapenaeus,* Penaeus, Pleoticus, Pleiopenaeus, Solenocera, and Trachypenaeus. The origin of such samples was very diverse, including different areas of the Atlantic, Indian, and Pacific Oceans, but also the Mediterranean Sea and aquaculture from South America (Table 1). All of them have available COI sequence in GenBank (https://www. ncbi.nlm.nih.gov/genbank, accessed 31 May 2023). Most of the samples were bought frozen (n = 52; 55.3% of the total), but there were also 32 samples (34%) fresh and ten boiled (10.6%). Samples were bought in supermarkets (n = 79; 84% of the total samples) or fishmongers (n = 15; 15.9% of samples) with a variety of prices, ranging 8.69–30 \in /kg in frozen samples, 7.95–69.8 \in /kg in fresh samples, and 8.99–49.95 \in /kg in boiled samples (global mean of 20.2 \notin /kg, standard deviation = 13.79). Fresh samples were the 25.5% in supermarkets and the 53.3% in fishmongers, with no boiled samples in this last kind of establishment.

Considering BLAST identifications with more than 98% of identity, DNA amplification and subsequent sequence comparison showed 21 samples from the total of 94 samples (22.34%) as mislabelled. Such samples, as indicated on the product label, belong to six different genera and nine different species. Almost all of the incorrectly labelled samples were frozen (n = 20; 95.45%), the price ranged from 12 to 27.5 \in /kg, and all of them were bought in supermarkets (no mislabelled samples were detected in fishmongers), and none of them were produced in aquaculture.

When an identity rate greater than 99% was considered for the species level assignation, the results were very similar to those of 98% because only one sample showed a sequence similarity between 98% and 99% (more specifically, 98.75%). That means 20 samples mislabelled (24.09% from the 83 samples which had more than 99% similarity), which included the same six different genera and nine different species of those from 98% similarity. Almost all of them (n = 19, 95%) were also frozen, the price range was the same (12–27.5 \in /kg), none of them come from aquaculture, and all were purchased from a supermarket.

Finally, only 26 samples from the 94 (therefore 27.65%) could be assigned to the species level with a 100% identity rate in BLAST analyses. Mislabelling was detected in four of them (15.38%). All these samples were frozen and bought in supermarkets, with no aquaculture samples.

Mislabelling has been here detected in prawns sampled in Spanish markets. The percentage of samples mislabelled using 99% of DNA sequence similarity was 24.09%, with no differences $(\chi^2 = 0.004, P = 0.95)$ when using 98%, according to previous works comparing percentage of DNA similarity for species identification.²⁹ However, this percentage was lower (15.38%) when a 100% identity score was considered for assigning the molecular identification of the species. This occurs because only 26 samples showed 100% identity with sequences uploaded to the database, probably due to the low number of COI sequences (haplotypes) of these animals are present in GenBank. For these reasons, we discuss hereon the 99% similarity results, which reported, as stated earlier, 24.09% of mislabelling in prawns sampled in Spanish markets. Previous work in commercial prawns/shrimps had been found between 22% and 66% of mislabelling in different markets.¹⁹⁻²⁴ This proportion of mislabelling is also similar to others previously found in fish served in restaurants,¹⁸ fish served in Metro Vancouver,³⁰ or seafood in caterings.¹³

Interestingly, mislabelling was almost exclusively found in frozen samples (95.45% of the total), and all of them were bought in supermarkets (no mislabelled samples were detected in fishmongers or coming from aquaculture). This agrees with previous studies showing mislabelling as occurring in seafood processing.¹⁶ In addition, mean price of the mislabelled samples 16.9 and 21.11 €/kg in the no-mislabelled samples, but no statistical differences in mislabelling were found due to price (Mann-Whitney U = 692, P = 0.79), so mislabelling seems to be common, independent of product price. In relation to sample geographic origin, nearly half of the mislabelled samples came from the Indian Ocean, but only 5.5% of the corrected labelled samples came from this ocean. The majority of the corrected labelled samples (45.2%) came from the Atlantic Ocean. This could lead to identify the Indian Ocean as a potential area for prawn mislabelling. Previous research on seafood mislabelling proposed that it was more prevalent in Pacific species than in others.¹⁶ In agreement with this, the Pacific samples of this work (n = 6) were mislabelled in the majority (n = 5, 83.3%), confirming the Pacific area as a potential source of mislabelling also in prawns.

In addition to all this, several findings of this study point to deliberateness in the found mislabelling:

- (1) When analysing per products (samples included in the same product bag or pool), the presence of at least one mislabelled sample was detected in 16 products (29.09% of the total). In such mislabelled products, when two samples were successfully amplified by PCR (n = 7), mislabelling occurred in both samples in more than half of cases (n = 5, 71.43%). Interestingly, in most of these cases (n = 4, 80%; products St18, St24, St50 and St51), the two mislabelled species were different species.
- (2) The found mislabelling included in most cases (76.19%) of species of different genus of the labelled species, are usually different in their morphology. Mislabelling was found in fresh/boiled products only in one sample (Sa35, fresh), which is more easily identified by visualization than frozen products (these samples are usually individuals without head and exoskeleton).
- (3) There were two samples in which the natural distribution of the species of the label and the molecular-identified species were very different. In the sample Sa66, the species of the label (Solenocera melantho) is distributed across Asia and Australia waters, and the molecular-identified species (Pleoticus robustus) is distributed across American waters. In the other case (sample Sa68) the species of the label (Penaeus vannamei) the eastern Pacific coast from northern Mexico to northern Peru, meanwhile the actual species (Pleoticus muelleri) inhabits the other side of the South America across the southwest Atlantic, from southeast Brazil to Argentine Patagonia.

CONCLUSION

All in all, mislabelling in prawn products in Spain is high (close to 30% of products in supermarkets), occurs independently of its price, and points to be deliberate. It has only been found in supermarkets, and not in fishmongers, and the vast majority in frozen products, with no aquaculture (n = 13) samples mislabelled. The Pacific area seems to be especially affected for this practice. As a positive outcome of this study, none of the detected species involved in the mislabelling are present in the IUCN Red List of Threatened Species (https://www.iucnredlist.org, accessed 10 July 2023).

Taking all these findings into consideration, recommendations for the consumer in order to avoid mislabelling in shrimp/prawns would include:

 To buy fresh or boiled products, because the majority of the mislabelled samples were frozen. these establishments.

(2) To buy in fishmongers, because no mislabelling was found at (3) Do not avoid aquaculture samples because no mislabelling was detected on them. However, be careful with other associated problems of aquaculture such as contaminants, antibiotics, or sustainability, among others.³¹⁻³³ (4) Do not consider price (e.g., high price) to try to avoid mislabelling, because no different outcomes were found. (5) Buy samples from the Atlantic Ocean, and not from the Indian and Pacific Oceans, because mislabelling is very much common in these last two areas. Following these recommendations, the probabilities of buying mislabelled prawn products are low, thus it could help consumers to avoid the health,³⁴ economic,³⁵ and conservation⁸ problems directly related to mislabelling. This last information is very important, because this is, to our knowledge, the first time that information revealed by DNA barcode analysis has been used to provide recommendations to help customers to avoid potential deceit in the seafood industry, highlighting its usefulness in helping people make informed decisions about the types of items and suppliers to choose in order to prevent food fraud and health hazards. Based on that, further research is necessary to make such recommendations in different food products, particularly those that are processed, packaged and/or frozen.

ACKNOWLEDGEMENTS

The authors want to acknowledge Professors Cesar Benito and Rosario Linacero for their support. Additionally, the authors extend their thanks to laboratory technicians Carmen Moreno and Jose Barrios for their continuous assistance.

FUNDING INFOMATION

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

- 1 Food and Agriculture Organizations of the United Nations (FAO), The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. FAO, Rome (2022). https://doi.org/10.4060/cc0461en.
- 2 European Market Observatory for Fisheries and Aquaculture Products (EUMOFA), The EU Fish Market 2022. European Union, Brussels (2022). Available: https://eumofa.eu/documents/20124/35731/ EFM2022 EN.pdf.
- 3 Commission E, for Maritime Affairs D-G, and Fisheries, Facts and Figures on the Common Fisheries Policy – Basic Statistical Data – 2022. Publications Office of the European Union, Brussels (2022). Available: https://oceans-and-fisheries.ec.europa.eu/facts-and-figures/ facts-and-figures-common-fisheries-policy_en.
- 4 Luque GM and Donlan CJ, The characterization of seafood mislabeling: a global meta-analysis. Biol Conserv 236:556-570 (2019). https://doi. org/10.1016/j.biocon.2019.04.006.

- 5 Guardone L, Tinacci L, Costanzo F, Azzarelli D, D'Amico P, Tasselli G et al., DNA barcoding as a tool for detecting mislabeling of fishery products imported from third countries: an official survey conducted at the border inspection post of Livorno-Pisa (Italy). Food Control 80:204-216 (2017). https://doi.org/10.1016/j.foodcont. 2017.03.056
- 6 Visciano P and Schirone M, Food frauds: global incidents and misleading situations. Trends Food Sci Technol 114:424-442 (2021). https:// doi.org/10.1016/j.tifs.2021.06.010.
- 7 Spink J and Moyer DC, Defining the public health threat of food fraud. J Food Sci **76**:R157–R163 (2011). https://doi.org/10.1111/j.1750-3841.2011.02417.x.
- 8 Horreo JL, Machado-Schiaffino G and García-Vázquez E, Forensic assignment to geographic origin, a useful tool in seafood fraud control. Forensic Sci Int 272:37-40 (2017). https://doi.org/10.1016/j. forsciint 2017.01.003
- 9 Fernandes TJR, Amaral JS and Mafra I, DNA barcode markers applied to seafood authentication: an updated review. Crit Rev Food Sci Nutr 61: 3904-3935 (2021). https://doi.org/10.1080/10408398.2020.1811200.
- 10 Antil S, Abraham JS, Sripoorna S, Maurya S, Dagar J, Makhija S et al., DNA barcoding, an effective tool for species identification: a review. Mol Biol Rep 50:761-775 (2023). https://doi.org/10.1007/s11033-022-08015-7.
- 11 Filonzi L, Ardenghi A, Rontani PM, Voccia A, Ferrari C, Papa R et al., Molecular barcoding: a tool to guarantee correct seafood labelling and quality and preserve the conservation of endangered species. Foods 12:2420 (2023). https://doi.org/10.3390/foods12122420.
- 12 Günther B, Raupach MJ and Knebelsberger T, Full-length and minilength DNA barcoding for the identification of seafood commercially traded in Germany. Food Control 73:922-929 (2017). https:// doi.org/10.1016/j.foodcont.2016.10.016.
- 13 Pardo MÁ, Jiménez E, Viðarsson JR, Ólafsson K, Ólafsdóttir G, Daníelsdóttir AK et al., DNA barcoding revealing mislabeling of seafood in European mass caterings. Food Control 92:7-16 (2018). https://doi.org/10.1016/j.foodcont.2018.04.044.
- 14 Ramirez JL, Simbine L, Margues CG, Zelada-Mázmela E, Reyes-Flores LE, López AS et al., DNA barcoding of Penaeidae (Decapoda; Crustacea): non-distance-based species delimitation of the Most economically important shrimp family. Diversity 13:460 (2021). https://doi.org/10. 3390/d13100460
- 15 Dawan J and Ahn J, Application of DNA barcoding for ensuring food safety and quality. Food Sci Biotechnol 31:1355-1364 (2022). https://doi.org/10.1007/s10068-022-01143-7.
- 16 Muñoz-Colmenero M, Blanco O, Arias V, Martinez JL and Garcia-Vazquez E, DNA authentication of fish products reveals mislabeling associated with seafood processing. Fisheries 41:128-138 (2016). https://doi.org/10.1080/03632415.2015.1132706.
- 17 Pardo MÁ and Jiménez E, DNA barcoding revealing seafood mislabeling in food services from Spain. J Food Compos Anal 91:103521 (2020). https://doi.org/10.1016/j.jfca.2020.103521.
- 18 Horreo JL, Fitze PS, Jiménez-Valverde A, Noriega JA and Pelaez ML, Amplification of 16S rDNA reveals important fish mislabeling in Madrid restaurants. Food Control 96:146-150 (2019). https://doi. org/10.1016/j.foodcont.2018.09.020.
- 19 Cawthorn D-M and Hoffman LC, Deceit with decapods? Evaluating labelling accuracy of crustacean products in South Africa. Food Control 73: 741-753 (2017). https://doi.org/10.1016/j.foodcont.2016.09.027.
- 20 Korzik ML, Austin HM, Cooper B, Jasperse C, Tan G, Richards E et al., Marketplace shrimp mislabeling in North Carolina. PLoS One 15: e0229512 (2020). https://doi.org/10.1371/journal.pone.022951.
- 21 Ortiz-Moriano MP, Machado-Schiaffino G, Garcia-Vazquez E and Ardura A, Traceability challenges and heavy metal risks in commercial shrimp and prawn. Food Control 157:110193 (2024). https://doi. org/10.1016/j.foodcont.2023.110193
- 22 Pascoal A, Barros-Velázquez J, Cepeda A, Gallardo JM and Calo-Mata P, Identification of shrimp species in raw and processed food products by means of a polymerase chain reaction-restriction fragment length polymorphism method targeted to cytochrome b mitochondrial sequences. Electrophoresis 29:3220-3228 (2008). https://doi. org/10.1002/elps.200800132.
- 23 Rivers MC, Campbell AB, Lee CH, Kapoor P and Hellberg RS, Short-weighting, species authentication, and labeling compliance of prepackaged frozen shrimp sold in grocery stores in Southern California. Food Control 155:110101 (2024). https://doi.org/10.1016/j. foodcont.2023.110101.

10970010, 0, Downloaded from https://scijournals.onlinelibrary.wiley.com/doi/10.1002/jsfa.13771 by Readcube (Labtiva Inc.), Wiley Online Library on [06/09/2024]. See the Terms

and Conditions (https://onlinelibrary.wiley.com/terms

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

- 24 Wilwet L, Shakila RJ, Sivaraman B, Nayak BB, Kumar HS, Jaiswar AK *et al.*, Rapid detection of fraudulence in seven commercial shrimp products by species-specific PCR assays. *Food Control* **124**:107871 (2021). https://doi.org/10.1016/j.foodcont.2021.107871.
- 25 Wilwet L, JeyaShakila R, Sivaraman B, Nayak BB, Kumar HS, Jaiswar AK et al., In-house and on-field validation of the multiplex PCR assay developed for authentication of three commercially important shrimp species. LWT 148:111701 (2021). https://doi.org/10.1016/j. lwt.2021.111701.
- 26 Folmer O, Black M, Hoeh W, Lutz R and Vrijenhoek R, DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Mol Mar Biol Biotechnol* 3:294–299 (1994).
- 27 Tamura K, Stecher G and Kumar S, MEGA11: molecular evolutionary genetics analysis version 11. *Mol Biol Evol* 38:3022–3027 (2021). https://doi.org/10.1093/molbev/msab120.
- 28 Hammer Ø, Harper DAT and Ryan PD, Past: paleontological statistics software package for education and data analysis. *Palaeontol Electron* 4:1–9 (2001).
- 29 Kappel K and Schröder U, Substitution of high-priced fish with lowpriced species: adulteration of common sole in German restaurants. *Food Control* **59**:478–486 (2016). https://doi.org/10.1016/j.foodcont. 2015.06.024.

- 30 Hu Y, Huang SY, Hanner R, Levin J and Lu X, Study of fish products in metro Vancouver using DNA barcoding methods reveals fraudulent labeling. *Food Control* **94**:38–47 (2018). https://doi.org/10.1016/j. foodcont.2018.06.023.
- 31 Chen J, Sun R, Pan C, Sun Y, Mai B and Li QX, Antibiotics and food safety in aquaculture. J Agric Food Chem 68:11908–11919 (2020). https:// doi.org/10.1021/acs.jafc.0c03996.
- 32 Garlock T, Asche F, Anderson J, Ceballos-Concha A, Love DC, Osmundsen TC *et al.*, Aquaculture: the missing contributor in the food security agenda. *Glob Food Sec* **32**:100620 (2022). https://doi. org/10.1016/j.gfs.2022.100620.
- 33 Chary K, van Riel A, Muscat A, Wilfart A, Harchaoui S, Verdegem M et al., Transforming sustainable aquaculture by applying circularity principles. *Rev Aquac* **16**:656–673 (2024). https://doi.org/10.1111/raq. 12860.
- 34 Triantafyllidis A, Karaiskou N, Perez J, Martinez JL, Roca A, Lopez B et al., Fish allergy risk derived from ambiguous vernacular fish names: forensic DNA-based detection in Greek markets. Food Res Int 43: 2214–2216 (2010). https://doi.org/10.1016/j.foodres.2010.07.035.
- 35 Everstine K, Spink J and Kennedy S, Economically motivated adulteration (EMA) of food: common characteristics of EMA incidents. *J Food Prot* **76**:723–735 (2013). https://doi.org/10.4315/0362-028X.JFP-12-399.