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Cockroach management relies heavily on the use of conventional insecticides in urban settings, which no longer 
provide the anticipated level of control. Knowledge of cockroach endosymbionts, like Wolbachia, might provide 
novel avenues for control. Therefore, we screened 16 cockroach species belonging to 3 families (Ectobiidae, 
Blattidae, and Blaberidae) for the presence of Wolbachia. We mapped the evolution of Wolbachia-cockroach 
relationships based on maximum likelihood phylogeny and phylogenetic species clustering on a multi-loci 
sequence dataset (i.e., coxA, virD4, hcpA, and gatB) of Wolbachia genes. We confirmed the previous report of 
Wolbachia in 1 Ectobiid species; Supella longipalpa (Fab.), and detected the presence of Wolbachia in 2 Ectobiid 
species; Balta notulata (Stål) and Pseudomops septentrionalis Hebard, and 1 Blaberid species; Gromphadorhina 
portentosa (Schaum). All cockroach-associated Wolbachia herein detected were clustered with the ancestor of 
F clade Wolbachia of Cimex lectularius L.  (bed bugs). Since Wolbachia provision C. lectularius with biotin 
vitamins that confer reproductive fitness, we screened the cockroach-associated Wolbachia for the presence 
of biotin genes. In toto, our results reveal 2 important findings: (i) Wolbachia is relatively uncommon among 
cockroach species infecting about 25% of species investigated, and (ii) cockroach-associated Wolbachia have 
biotin genes that likely provide nutritional benefits to their hosts. Thus, we discuss the potential of exploring 
Wolbachia as a tool for urban insect management.
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Introduction

Wolbachia is a genus of gram-negative intracellular maternally 
transmitted bacteria. It belongs to the family Ehrlichiaceae (recently 
emended from Anaplasmataceae) (Hertig and Wolbach 1924, Hördt 
et al. 2020). Wolbachia infects a diverse range of arthropods and 
parasitic nematodes (Hilgenboecker et al. 2008, Werren et al. 2008). 
Taxonomical consensus for Wolbachia strains relies on the mono-
phyletic lineage or groups, also known as supergroups or clades, 
which run from A to T, and the recently identified supergroup U from 
bat mites (Casiraghi et al. 2005, Kaur et al. 2021, Olanratmanee et 
al. 2021).

Wolbachia encompasses a broad spectrum of relationships with 
its host. Phenotypes range from reproductive modifications like fem-
inization (Bouchon et al. 1998, Badawi et al. 2015), male-killing 
(Hurst and Majerus 1993, Perlmutter et al. 2019), parthenogenesis 
(Stouthamer et al. 1990, Hagimori et al. 2006), and cytoplasmic 

incompatibility (Laven 1957, Yen and Barr 1971, Beckmann and 
Fallon 2013). Wolbachia can also induce other phenotypic effects 
in their hosts such as pathogen blocking (Teixeira et al. 2008, 
Hughes et al. 2011, Fraser et al. 2020), alteration of host immune 
genes (Zhang et al. 2020), and provisioning of essential nutrients 
(Nikoh et al. 2014). As a result, Wolbachia represents a possible tool 
for manipulating host biology and a sustainable approach for in-
sect management in certain situations (Laven 1967, O’Neill et al. 
2019, Zheng et al. 2019). Wolbachia has been used to achieve pop-
ulation suppression and reduce vector competence of medical and 
agricultural insect pests. This is probably because Wolbachia sub-
strate targets are conserved across insect species (Oladipupo et al. 
2023). For example, Wolbachia-infected mosquitoes were released 
in Australia (Hoffmann et al. 2011). Likewise, in the United States 
(Mains et al. 2019, Crawford et al. 2020). Following the release, wild 
mosquito populations were transformed and their ability to transmit 
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dengue was reduced (Hoffmann et al. 2011, Ross et al. 2022). 
Similarly, Wolbachia-mediated pathogen-blocking effects have been 
recorded under experimental conditions (Walker et al. 2011).

Urban entomology traditionally deals with the study of insect 
pests, such as cockroaches, that affect people and their property. Three 
cockroach families particularly stand out: Ectobiidae, Blattidae, and 
Blaberidae. The field of urban entomology has witnessed a paradigm 
shift from the use of conventional insecticides to safer and more sus-
tainable options (Gondhalekar 2019, Oladipupo et al. 2022), espe-
cially for cockroach control. For example, RNA interference was 
used to silence the expression of the precopulatory protein presented 
by the male German cockroach, Blattella germanica (L.) (Myers et 
al. 2018). Such a tool in that study could distort orientation and 
prevent successful mating between a male and female German 
cockroach. Essential oils were incorporated in super absorbent pol-
ymer gels to compromise the reproductive fitness of female German 
cockroaches (Oladipupo et al. 2020a, 2020b). Deltaproteobacteria 
and Clostridia were used to induce pathogenicity in bed bugs (Pietri 
and Liang 2018). Injury among cockroach species was exploited to 
increase their susceptibility to parasitoids (Tee and Lee 2017). These 
studies highlight a shift from conventional insecticide applications to 
sustainable and eco-friendly alternatives.

As existing cockroach control strategies are not always sufficient 
(Pai et al. 2005, Fardisi et al. 2019) and should either be bolstered 
by other techniques (Perry and Choe 2020, Hamilton et al. 2021) 
or replaced by new methods (Oladipupo et al. 2020a, 2020b), 
Wolbachia represents a potential new, safe (Popovici et al. 2010) 
tool, yet untested in cockroach management. Two cockroach species, 
Supella longipalpa (Fab.) and B. germanica, are known to harbor 
Wolbachia (Vaishampayan et al. 2007, Jin et al. 2008). Wolbachia 
associated with S. longipalpa belongs to the Wolbachia F super-
group (Vaishampayan et al. 2007). Most Wolbachia strains from 
the F supergroup encode biotin and riboflavin synthesis pathways 
that provide planthoppers with nutrients necessary for fecundity (Ju 
et al. 2020, Pan et al. 2020). Bed bugs also rely on the F super-
group Wolbachia’s biotin synthesis operon of obligate intracellular 
microbes (BOOM) to provide B vitamins essential for their fitness 
and survival (Nikoh et al. 2014, Driscoll et al. 2020). Both bed bugs 
and cockroach co-infestation are common in homes. Consequently, 
an approach to control these populations might be to take advan-
tage of this specific interdependence between Wolbachia supergroup 
F and these hosts by eliminating the endosymbiont. Such a system 
could inhibit host development. To exploit Wolbachia as a cockroach 
control strategy in the future, the first step is to map the phylogenetic 
relationship of the endosymbiont to predict possible phenotypic 
effects. The impact of this technique depends on 2 components: (i) 
whether the cockroaches are naturally infected with Wolbachia, and 
(ii) whether Wolbachia is essential for cockroach survival—which 
has not yet been proven.

As a classification tool, the multilocus sequence typing (MLST) 
method can elucidate Wolbachia’s phylogenetic lineages. It involves 
using a range (typically 4–7) of housekeeping genes (Baldo et al. 
2006). For Wolbachia, we used the hcpA (hypothetical conserved 
protein in bacteria), coxA (encodes a subunit of the respiratory 
chain), gatB (synthesizes charged tRNAs), wsp (encodes outer sur-
face protein), and virD4 (Type IV secretion system) (see Table 1) 
(Baldo et al. 2006). Understandably, the adequacy of MLST at 
strain differentiation has been challenged and whole-genome typing 
approaches have been suggested instead (Bleidorn and Gerth 2018). 
However, due to the difficulties in bacterial isolation, the whole-
genome typing approach might only sometimes be feasible for 
Wolbachia at present. Consequently, the MLST system is optimized 

to reliably identify closely related Wolbachia strains and their host 
associations (Wang et al. 2020, Ramalho et al. 2021). The delinea-
tion of Wolbachia to the supergroup level suggests important ecolog-
ical and functional characteristics that could be exploited for insect 
and disease biocontrol (Kaur et al. 2021). For example, Wolbachia 
supergroups A and B are reproductive manipulators in arthropods 
(Vandekerckhove et al. 1999) C and D enhance fertility and devel-
opment in Onchocercidae nematodes (Bandi et al. 1998). Wolbachia 
supergroup E found in mites plays a role in thelytokous partheno-
genesis (Konecka and Olszanowski 2021), while those of F coinfect 
insect arthropods and Onchocercidae nematodes (Mansonella spp.) 
and play a role in nutritional mutualism (Casiraghi et al. 2005, Ju 
et al. 2020). Supergroup M infects aphids inducing different phe-
notypic effects (Wang et al. 2014). In short, the supergroup-host 
association can initially reveal important implications for biotech-
nology development. To this end, Wolbachia’s infection status herein 
was explored in 3 cockroach families (i.e., Ectobiidae, Blattidae, 
and Blaberidae) using molecular tools. We mapped the phylogenetic 
relationship of cockroach-associated Wolbachia and discuss our 
findings’ implications for urban insect management.

Materials and Methods

Cockroach Collection and DNA Extraction
From March to July 2020, specimens (n = 100) representing 16 
cockroach species belonging to 3 families: Ectobiidae, Blattidae, 
and Blaberidae, were collected either from the field around the 
Auburn University campus or retrieved from laboratory-maintained 
specimens in the Urban Entomology laboratory at Auburn University, 
Auburn, Alabama, USA (Table 2). As Wolbachia is concentrated in 
the reproductive tissues of insects (Hertig and Wolbach 1924), we 
dissected female medium-sized and large cockroaches to isolate re-
productive tissues before DNA extraction according to Hoofman 
and Winston (1987) with slight modifications (Supplementary 
Appendix 1). For small-sized cockroaches, DNA was extracted and 
pooled from groups of 3–5 females, and 3–5 pooled samples were 
analyzed independently. DNA was extracted from the ovaries and 
analyzed from 5 to 8 individual females for medium-sized and large 
cockroaches.

PCR screening, cloning, and sequencing
Cockroach genomic DNA samples were PCR amplified, cloned, 

and Sanger sequenced using primers sets (Table 1) targeting 5 house-
keeping genes: coxA, gatB, hcpA, wsp, and virD4 genes. All PCR 
reactions were conducted as described (Supplementary Appendix 
1). All sequences were obtained in triplicates; the corresponding 
amplicon sizes are provided in Table 1. The Wolbachia-infected 
Drosophila simulans Sturtevant and D. melanogaster Meigen DNA, 
as well as  DNA-free water and Wolbachia-free D. simulans and 
D. melanogaster DNA, were included as control templates at each 
PCR reaction. DNA samples were amplified for the target genes 
listed above in a total volume of 100 µl using high-fidelity poly-
merase Phusion (New England Biolabs). PCR cycling conditions 
were performed as reported (Supplementary Appendix 2). Amplified 
DNA was eluted by E.Z.N.A Gel Extraction Kit (Omega Bio-Tek).

NotI and BamHI restriction sites were added to forward 
and reverse primers, respectively, downstream cloning into 
pBluescript II SK+. PCR cycling conditions were performed as re-
ported (Supplementary Appendix 2), and purified DNA amplicons 
were subcloned into pBluescript II SK+ (coxA, gatB, and hcpA) 
or pJET1.2/blunt (virD4 and wsp) vectors and transformed into 
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competent Escherichia coli Top10F cells. Clones were screened for 
the presence of recombinant plasmids with the desired insert by 
gene-specific PCR. Mini-prepped plasmids were sent to Molecular 
Cloning Laboratories (San Francisco, CA) for forward and reverse 
Sanger sequencing.

In addition, both Biotin C (700 bp) and Biotin H (1,000 bp), and 
the cockroach cox1 gene (708 bp) were PCR amplified and sequenced 
using specific primer sets (Table 1) as described previously (Balvín et 
al. 2018) (see Supplementary Appendix 2 for more details). For each 
amplicon (i.e., wsp, VirD4, or histone), the expected bands were re-
solved through gel electrophoresis. Corresponding gels derived from 
the same PCR reaction were placed side by side (Fig. 1). All gels were 
processed in parallel using Adobe Photoshop 2020. The original full-
length gels are provided (see Supplementary Appendix 3).

Phylogenetics
Gene dataset preparation and maximum likelihood phylogeny.
All available homologous DNA sequences (n = 942) of the 
searched Wolbachia housekeeping genes (i.e., coxA, virD4, hcpA, 
and gatB) were retrieved from the GenBank database using the 
Multiple Sequence Alignment Viewer (MSAV) 1.21.0 – NCBI 
(implemented as a function within Blastn). Reference sequences 
derived from draft/complete Wolbachia genomes were identified 
and aligned using MAFFT v7.490 software (Nakamura et al. 
2018) before sequence concatenation with SeaView 5.0.5 software 
(Gouy et al. 2010). The concatenated reference sequences were 
then subjected to trimming using TrimAL v1.4. rev15 software 
(Capella-Gutierrez et al. 2009). The multisequence alignment file 
was split into 2 partitions: (i) the reference multilocus-sequence 
alignment (Ref-MLSA) containing the concatenated Wolbachia 
sequences from the cockroach species we sequenced and 34 other 
sequences from the reference entries described above, which 
encompasses Wolbachia supergroup A, B, D, F, J, and T, and (ii) 
query sequence alignment containing the remaining sequences de-
rived from all gene datasets (n = 908). The maximum likelihood 
(ML) phylogeny was performed on the Ref-MLSA using IQTREE 

software (IQ-TREE multicore version 1.6.12 for Mac OS X 
64-bit) (Nguyen et al. 2015) to generate the reference tree (Ref-
Tree) under 1000 Ultra-Fast bootstrap (Hoang et al. 2018). The 
K3Pu (+F+G4) model was selected by ModelFinder (implemented 
as a function in IQTREE) (Kalyaanamoorthy et al. 2017) before 
tree computation.

Phylogeny postanalysis.
To evaluate Wolbachia supergroup diversity, analysis based ei-
ther on the phenetic (assemble species by automatic partitioning 
[ASAP]) (Puillandre et al. 2021) and the automatic barcode gap 
discovery (ABGD) for primary species delimitation (Puillandre et 
al. 2012) or on the ML phylogeny (Poisson tree processes, i.e., PTP) 
(Zhang et al. 2013) and its Bayesian version (bPTP) (Toussaint et 
al. 2016). The general mixed Yule-coalescent (GMYC) (Fujisawa 
and Barraclough 2013) were performed on the Ref-MLSA and 
the Ref-Tree, respectively. Species delimitation analysis was 
conducted within the iTaxoTools 0.1 software (Vences et al. 2021). 
The partitioned results of all delimitation algorithms were then 
analyzed simultaneously under the Limes software (Ducasse et al. 
2020).

Biotin and cockroach–Wolbachia cospeciation.
To test whether the biotin synthesis genes (Fig. 2) coevolved within 
the cockroach Wolbachia compared to their host phylogeny, com-
parative event-based analysis and cophylogenetic reconciliations 
were investigated on the Wolbachia hcpA against the concatenated 
biotin C and H genes. Briefly, each sequence dataset (i.e., hcpA, 
biotins C and H) of cockroach-Wolbachia strains obtained were 
aligned against those from the F clade Wolbachia infecting bed 
bugs. We chose to align with the bed bug Wolbachia because it 
contains a functional biotin gene with an indispensable role 
in bed bug development (Nikoh et al. 2014, Balvín et al. 2018, 
Hickin et al. 2022). The cox1 sequences of their bed bug hosts 
(Balvín et al. 2018) were aligned using MAFFT v7.490 software 
(Nakamura et al. 2018). Biotin genes were concatenated using 

Table 1. Gene and primer features

Gene (amplicon 
length) Function Primer sequence (5’–3’)

Annealing tem-
perature (°C)

Extension 
time (s)

Biotin C (700 bp) Biotin synthesis *BioC F2742- CCAACGTCGGTATCTGTTCCT
BioC R3700- CAGCTACCACACATACCACT

57.6 45

Biotin H (1,000 bp) Biotin synthesis *BioH F3348- TGTAGCCTGTACCTGTAC CCA
BioH R4123- GTGTTTTGTCACGGTTGGGG

57.6 45

coxA (460 bp) Encodes a subunit of the 
respiratory chain

EF013 F- CCATATTAGCTGGAATTATTGGTGG
EF014 R- GCGCACAAAAGGAATGTCATTAAC

50 30

gatB (210 bp) Synthesizes charged 
tRNAs

EF010 F- GTGATGGYGATATRGARAARGG
EF012 R- GTCAAGATACCTTATTRTTYG

47.8 25

hcp (400 bp) Conserved protein in 
bacteria

EF015 F- CGYTCTGCTATMTTTGCYGC
EF016 R- CYTGTGAARTAAARGATTTTGG

53.6 33

Histone (380 bp) Provides structural sup-
port to the chromosome

*H3 AF - ATGGCTCGTACCAAGCAGACVGC
H3 AR- ATATCCTTRGGCATRATRGTGAC

58 40

virD4 (257 bp) Type IV secretion system LM68 F- CCTACAGGYTCKGGYAARGGTG
LM69 R- GCCAAAARTCYTGYTCAGGC

60 30

wsp (550 bp) Outer surface protein *WSP F- GTCCAATARSTGATGARGAAAC
WSP R- CYGCACCAAYAGYRCTRTAAA

55 60

Universal cox1 Component of the respira-
tory chain

LCO1490- GGTCAACAAATCATAAAGATATTGG
HCO2198- TAAACTTCAGGGTGACCAAAAAATCA

57.6 45

F = forward; R = reverse; *biotin primers were retrieved from Balvín et al. (2018), histone primers from Baldo et al. (2006), and universal cox1 
primers from Folmer et al. (1994). The rest of the primers were designed by SOO (see author contributions for more).
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SeaView 5.0.5 software (Gouy et al. 2010). Neighbor-joining phy-
logenesis was performed on each sequence alignment (i.e., hcpA, 
concatenated Biotin C/H, and host cox1) using MEGA6 soft-
ware (Tamura et al. 2013). The cophylogenetic reconciliation be-
tween each combination of Wolbachia/host trees was performed 
using the maximum parsimony reconciliations (MPRs) based on 
the duplication-transfer-loss model within eMPRess v1 software 
(Santichaivekin et al. 2021). The co-speciation (host and endosym-
biont speciate simultaneously) represents the null hypothesis with 
0 cost event, duplication (intra-host speciation), loss (host speciates 
but endosymbiont fails to establish in one of the new lineages), 
and transfer (representing an inheritance of a Wolbachia from a 
kind species reflecting a crucial event in the evolution of the sym-
biotic relationships between species). For each cophylogenetic 

reconciliation, the cost of 4.63, 5.89, and 1 were selected for the 
duplication, transfer, and loss, respectively, using the eMPRess v1 
software (Santichaivekin et al. 2021).

Results

PCR Screening and Phylogenetics Reveal Novel 
Cockroach Wolbachia Strains
Using PCR, we screened 16 cockroach species belonging to 3 families: 
Ectobiidae, Blattidae, and Blaberidae (Table 1). Only 4 of the cock-
roach species screened harbored Wolbachia (Fig. 1). The 4 Wolbachia-
infected cockroach species were Gromphadorhina portentosa from 
the Blaberidae (ovoviviparous), along with Supella longipalpa, 
Pseudomops septentrionalis, and Balta notulata from the Ectobiidae 

Table 2. List of cockroach species PCR screened for the presence of Wolbachia

Family Speciesa

Common 
name (US) Collection reference Number screened

Ectobiidae 
(Ovipa-
rous)

Balta notulata 
(Stål)

Small-spotted 
cockroach

Field-collected DNA was extracted and pooled from groups of 
3–5 females for small cockroach species and 3–5 
pooled samples were analyzed independentlySupella 

longipalpa  
(Fabricius)

Brown-
banded 
cockroach

Field-collected

Blattella 
germanica (L.)

German cock-
roach

Field-collected 
and laboratory-
maintained

Blattella asinahi 
Mizukubo

Asian cock-
roach

Field-collected 
and laboratory-
maintained

Blattella vaga 
Hebard

Field cock-
roach

Laboratory-
maintained

Pseudomops 
septentrionalis 
Hebard

Pale bordered 
field cock-
roach

Field-collected

Blattidae 
(Ovipa-
rous)

Eurycotis 
floridana 
(Walker)

Palmetto bug, 
Florida 
wood roach

Laboratory-
maintained

DNA was extracted and analyzed from 5–8 indi-
vidual females

Blatta lateralis 
(Walker)

Turkestan 
cockroach

Laboratory-
maintained

Periplaneta 
fuliginosa 
(Serville)

Smokybrown 
cockroach

Laboratory-
maintained

Periplaneta ameri-
cana (L.)

American 
cockroach

Field-collected 
and laboratory-
maintained

Blaberidae 
(ovovi-
viparous)

Nauphoeta 
cinerea 
Burmeister

Speckled 
cockroach

Laboratory-
maintained

DNA was extracted and analyzed from 5–8 indi-
vidual females

Gromphadorhina 
Portentosa 
(Schaum)

Madagascar 
hissing 
cockroach

Laboratory-
maintained

Diploptera 
punctata 
(Eschscholtz)

Pacific beetle 
cockroach

Laboratory-
maintained

Schultesia 
lampyridiformis 
Roth

Firefly mimic 
cockroach

Laboratory-
maintained

Blaptica dubia 
Serville

Dubia cock-
roach

Laboratory-
maintained

Leucophaea 
maderae (Fabri-
cius)

Maderae 
cockroach

Laboratory-
maintained

aSpecies in bold are PCR-positive for the presence of Wolbachia.
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Fig. 1. (A) Cockroach families and species PCR screened for the presence of Wolbachia. Species in red fonts are strongly positive for Wolbachia (B) Cockroach 
PCR gels show amplicons from 16 cockroach species. wsp (top), virD4 (middle) primers, and histone (bottom—control for DNA quality). Water, Wolbachia-cured 
Drosophila simulans, and D. melanogaster are negative controls. Wolbachia-infected D. simulans and D. melanogaster are positive controls. Four cockroach 
species are strongly positive for Wolbachia: Balta notulata, Supella longipalpa, Pseudomorphs septentrionalis, and Gromophorina portentosa. Others are 
negative. For each amplicon (i.e., wsp, virD4, or histone), corresponding cropped gels (i.e., gels separated by white space in B) were derived from the same PCR 
reaction. All gels were processed in parallel using Adobe Photoshop 2020. The full-length original gels are provided (see Supplementary Appendix 3).

Fig. 2. Organization and molecular analysis of the biotin operons of Wolbachia. The complete pathway for biotin is present in Wolbachia from Nomada eucophthalma 
(wNlue) supergroup A, and Wolbachia from bedbug Cimex lectularius (wCle) supergroup F only. Wolbachia from Atemnus politus, (wApol) lacks the bioC, bioA, 
and bioD genes. The presence of bioC and bioH genes in the biotin operon indicates the presence of a functional biotin operon (Lefoulon et al. 2020).
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(oviparous). After infections were detected, we sought to classify the 
Wolbachia from these 4 cockroach hosts in cladogram of Wolbachia. 
We cloned and Sanger sequenced 5 MLST markers (i.e., coxA, virD4, 
hcpA, wsp, and gatB) and concatenated consensus sequences from 
these isolates. Hereafter we refer to these strains as Wolbachia of G. 
portentosa (wGpo), S. longipalpa (wSlo), P. septentrionalis (wPse), 
and B. notulata (wBno). These strains clustered within the F clade 
that include Wolbachia from Cimex lectularius (wCle), the common 
bed bug (Fig. 3). Accordingly, all delimitation algorithms performed 
either on the ML tree (Ref-Tree) or the concatenated sequence align-
ment (Ref-MLSA) files classified these strains as an integral part of F 
clade Wolbachia. The pairwise homoplasy index (PHI) test detected 
significant recombination events throughout the Wolbachia strains 
(P-value = 3 × 10−15) (Fig. 4). While the recombination events of wCle 
were detected within the virD4 gene fragment, the recombination 
events were located in the wsp gene fragment of wBno and wGpo 
strains, followed by the hcpA gene of wPse and the gatB gene frag-
ment of wSlo strains (Fig. 3).

Biotin and Cockroach–Wolbachia Cospeciation
Based on available Wolbachia genome data, the presence of biotin 
C and H genes suggests that a biotin operon is functional (Lefoulon 
et al. 2020). Thus we sought to PCR amplify and sanger sequence 
these 2 genes from the Wolbachia-infected cockroaches. The result 
of event-based analysis on the concatenated biotin C and H from F 
clade Wolbachia strains (i.e., cockroach and Cimicidae-associated 
Wolbachia) replicated the same output as the housekeeping gene 
hcpA from the same Wolbachia strains regarding the cox1 phylogeny 

of their hosts. A total of 9 co-speciation events, 1 duplication, 6 
counts of transfer, and 8 counts of losses were identified throughout 
both tree reconciliations. As a result, a strong time consistency was 
found between both tree reconciliations, thereby refuting the null hy-
pothesis, that is, Wolbachia and host trees are similar due to chance 
(P-value = 0.0099) (Fig. 4). Both biotin C/H and hcpA reconciliations 
showed a transfer event between cockroach-associated Wolbachia 
lineage and Cimicidae-associated Wolbachia with functional biotin 
(Balvín et al. 2018) (Fig. 4).

Discussion

The types of relationships between Wolbachia and its host imply rel-
evant insights that could be exploited for host control (Nikoh et al. 
2014, Ju et al. 2020, Pan et al. 2020). Therefore, we investigated the 
distribution of Wolbachia within 3 cockroach families: Ectobiidae, 
Blattidae, and Blaberidae, to understand the relationship between 
cockroach-associated Wolbachia and their hosts. Our results re-
veal 3 significant findings: (i) Wolbachia is relatively uncommon 
among cockroach species, (ii) cockroach-associated Wolbachia 
are clustered within the ancestor F clade Wolbachia, and (iii) 
cockroach-associated Wolbachia have biotin genes that likely pro-
vide nutritional benefits to their cockroach hosts. Thus, we discuss 
the potentiality of exploring Wolbachia as a tool for urban insect 
management.

The present study confirmed the previous reports on the oc-
currence of F clade Wolbachia within cockroach species like S. 
longipalpa (Vaishampayan et al. 2007, Gibson and Hunter 2009) 

Fig. 3. Maximum likelihood (ML) phylogeny showing the distribution of Wolbachia clades. The tree corresponds to the IQTREE inferred from 38 concatenated 
genes. A total of 1,544 positions with 28.7% of informative sites. Accession numbers and species names are indicated at the tip of each branch. The bold blue 
label indicates the sequence obtained in the study. The tree includes 908 query sequences (blue circle) representing all GenBank entries of Wolbachia gene 
sequences. The color-coded bare indicated the result of delimitation algorithms. The size and position of recombination events throughout the alignment are 
shown.
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and extended knowledge on B. notulata, G. portentosa, and P 
septentrionalis as new hosts for Wolbachia (Floate et al. 2006). We 
were unable to detect the presence of Wolbachia in B. germanica as 
previously reported (Jin et al. 2008). This suggests that geograph-
ical structure likely plays a role in Wolbachia infection frequency in 
host. In Lepidoptera, Wolbachia infection frequency is influenced by 
abiotic factors such as latitudinal gradient and geographical location 
(Ahmed et al. 2015). Since US and China share a relatively close 
latitudinal gradient, this appears not to be the case here. In short, 
about 25% of the cockroach species screened harbor Wolbachia. 
The absence of Wolbachia DNA from all other Blattella spp. (i.e., B. 
vaga, B. germanica, and B. asinahi) holds 2 important implications: 
(i) Wolbachia infections are not common in cockroach species and 
(ii) Wolbachia can form a symbiotic association with cockroaches.

The bioinformatics approach combining maximum likelihood 
(ML) phylogeny and automated species delimitation algorithms 
conducted herein on a multilocus sequence typing (MLST) of coxA, 
virD4, hcpA, and gatB genes identified all cockroach-associated 
Wolbachia as a monophyletic lineage within the reference F clade 
strain of the common bed bug C. lectularius. The F supergroup 
contains Wolbachia infecting termites (e.g., genus Coptotermes, 
Odontotermes, Kalotermes), crickets (Hapithus agitator), and 
scorpions (Opistophthalmus). MLST is a valid way to estimate phy-
logenetic relationships between closely related Wolbachia and the 
identification of their supergroups (Baldo and Werren 2007, Wang et 
al. 2020). This is because the number of Wolbachia whole-genome 
data sets available to date is too small, and only the MLST system 
is optimized enough to reliably identify closely related Wolbachia 
strains and their host associations (Wang et al. 2020).

We were able to PCR amplify and sequence the biotin C and 
H genes in the Wolbachia-associated cockroaches. The presence of 
both genes, which is a rarity in many sequenced Wolbachia genomes 
(Nikoh et al. 2014, Ju et al. 2020, Lefoulon et al. 2020), was re-
ported only from Wolbachia strains with complete biotin operon. 
Thus, the presence of biotin C and H genes in these cockroach spe-
cies suggests the likely presence of a biotin operon. A functional 
BOOM in Wolbachia provisions biotin that plays a substantial role 
in the adaptation, evolution, and diversification of their insect hosts 
(Nikoh et al. 2014, Driscoll et al. 2020). For example, Wolbachia-
cured C. lectularius suffered about a 50% reduction in the number 

of eggs laid (Hosokawa et al. 2010). Subsequently, only about 20% 
of the 1st instar nymphs from these hatched eggs developed to adult-
hood (Hosokawa et al. 2010). This suggests that Wolbachia BOOM 
contributes significantly to bed bug fitness. It is now known that 
the relationship between these biotin-producing Wolbachia and 
their insect hosts is obligate nutritional mutualism (Nikoh et al. 
2014). Like wCle, the Wolbachia-associated cockroaches belong to 
the F supergroup. Wolbachia’s nutritional and obligate benefits to 
their hosts are a vulnerability that could be exploited. From a con-
trol standpoint, a parsimonious approach would be to use antibi-
otic baits to cure Wolbachia in natural populations of cockroaches 
such as S. longipalpa and P. septentrionalis, known to cluster around 
or in homes. Understandably, before this can be sought, 2 crucial 
experiments are necessary. First, the nutritional benefits of Wolbachia 
in their cockroach hosts must be ascertained. Second, cockroaches 
are omnivorous. If the nutritional benefits are confirmed, then how 
the broad diets of cockroaches could be supplemented by biotin 
should be clarified.

The report of Wolbachia in these cockroach species, and pre-
vious reports of the ubiquitous cockroach obligate endosymbiont, 
Blattabacterium, suggests may be the time is right to extend the 
definition of sustainable and eco-friendly alternatives to include 
endosymbionts as currently done with RNAI and other interventions 
(Gondhalekar 2019). For example, Blattabacterium plays a substan-
tial role in nitrogen recycling and essential amino acid provisioning 
for cockroaches (López-Sánchez et al. 2009). Wolbachia-mediated 
control as currently implemented with mosquitoes (Crawford et 
al. 2020, Ross et al. 2022) is an effective population suppression 
tool. Specifically, Wolbachia-infected males crossed with uninfected 
females produce no viable offspring (Beckmann et al. 2017). Thus, 
endosymbionts central to urban insect survival could be explored 
and exploited for control.

In conclusion, we report the presence of Wolbachia in 3 previ-
ously unreported cockroach species; B. notulata, P. septentrionalis, 
and G. portentosa. This cockroach-associated Wolbachia is nested 
in the Wolbachia supergroup F. Our findings suggest 2 potential 
applications. (i) The likely presence of a biotin operon in this 
Wolbachia suggests nutritional symbiosis. Future studies might ex-
ploit cockroach nutritional dependence on Wolbachia for the con-
trol of these nuisance insects. (ii) Wolbachia was present only in 

Fig. 4. Least-cost evolutionary reconstruction between F clade Wolbachia (blue) and their arthropod hosts (black) based on the concatenated biotin C and H genes 
(right figure) and the hcpA gene (left tree) with the coxA host tree at each time. The best maximum parsimony reconciliation (MPR) was selected for the biotin 
tree while a unique MPR presentation was found for the hcpA tree. A total of 9 co-speciation, 1 duplication, 6 transfer, and 8 loss events were mapped out for 
both reconciliation trees using preselected cost-event spaces of 4.63, 5.89, and 1 selected for duplication, transfer, and loss, respectively.
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25% of cockroach species investigated. Furthermore, the absence 
of Wolbachia in most cockroaches could allow for embryonic mi-
croinjection of cytoplasmic incompatibility inducing Wolbachia, 
into ootheca of species that do not naturally harbor Wolbachia 
to generate a transinfected line. For example, a population of 
transinfected Aedes albopictus lines was generated using embry-
onic microinjection (Xi et al. 2006). On Wolbachia stabilization, 
males can then be released with uninfected or incompatible females 
to achieve population suppression. Taken together, from an eco-
nomic standpoint, the exploration of endosymbionts as a tool to 
suppress urban insect pests, such as cockroaches, could potentially 
become viable in the future.
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