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A B S T R A C T   

Background: The number of reported cases of Legionnaires’ disease (LD) has risen markedly in Switzerland (6.5/ 
100,000 inhabitants in 2021) and abroad over the last decade. Legionella, the causative agent of LD, are ubiq-
uitous in the environment. Therefore, environmental changes can affect the incidence of LD, for example by 
increasing bacterial concentrations in the environment or by facilitating transmission. 
Objectives: The aim of this study is to understand the environmental determinants, in particular weather con-
ditions, for the regional and seasonal distribution of LD in Switzerland. 
Methods: We conducted a series of analyses based on the Swiss LD notification data from 2017 to 2021. First, we 
used a descriptive and hotspot analysis to map LD cases and identify regional clusters. Second, we applied an 
ecological model to identify environmental determinants on case frequency at the district level. Third, we 
applied a case-crossover design using distributed lag non-linear models to identify short-term associations be-
tween seven weather variables and LD occurrence. Lastly, we performed a sensitivity analysis for the case- 
crossover design including NO2 levels available for the year 2019. 
Results: Canton Ticino in southern Switzerland was identified as a hotspot in the cluster analysis, with a 
standardised notification rate of 14.3 cases/100,000 inhabitants (CI: 12.6, 16.0). The strongest association with 
LD frequency in the ecological model was found for large-scale factors such as weather and air pollution. The 
case-crossover study confirmed the strong association of elevated daily mean temperature (OR 2.83; CI: 1.70, 
4.70) and mean daily vapour pressure (OR: 1.52, CI: 1.15, 2.01) 6–14 days before LD occurrence. 
Discussion: Our analyses showed an influence of weather with a specific temporal pattern before the onset of LD, 
which may provide insights into the effect mechanism. The relationship between air pollution and LD and the 
interplay with weather should be further investigated.   

1. Introduction 

Legionnaires’ disease (LD), caused by inhalation or aspiration of the 
bacteria Legionella spp., is a severe form of pneumonia with a high case- 
fatality rate of 10% (Phin et al., 2014). Reported LD case numbers have 
been increasing in many countries, where the disease is surveyed. In the 
EU the notification rate increased from 1.4 cases per 100,000 population 
in 2015 to 2.2 in 2019 (ECDC, 2021). The US reported an increase from 
1.9 to 2.7 cases per 100,000 population between 2015 and 2018. The 
reason for this widespread increase in case numbers remains unclear. 

Apart from improved disease surveillance, the design and maintenance 
of building infrastructure, and an ageing and increasingly susceptible 
population, Barskey et al. suggest that the geographical distribution and 
increasing seasonal frequency of reported cases in summer indicate 
weather patterns may play a role in increasing LD incidence (Barskey 
et al., 2022). Studies from the European Centre for Disease Prevention 
and Control (ECDC) and others also consider climate change as one of 
the potential drivers of the increasing temporal trend (ECDC, 2021; 
Walker, 2018). 

Legionella spp. are ubiquitous in the environment, particularly in 
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water, and grow optimally in stagnant, warm water (25–42 ◦C) (Fields, 
2008). Therefore, most water reservoirs that aerosolise or evaporate are 
potential risk sources for infection (Orkis et al., 2018). Numerous in-
fectious sources have been reported ranging from residential drinking 
water (Buchholz et al., 2020), cooling towers, whirlpools, potting 
soil/compost, to fountains and wastewater treatment plants. Evidence 
stems mostly from outbreak investigations by mapping of cases and 
potential exposure sites using Geographic Information Systems (GIS) 
(Hammami et al., 2019; Nygård et al., 2008). However, the largest part 
of all LD cases are community-acquired and not related to an outbreak. 
The few studies that have spatially investigated sporadic cases focused 
on cooling towers (Dunn et al., 2007; Ricketts et al., 2012). As such the 
main sources of infection for sporadic cases remain unknown (Klamer 
et al., 2021; van Heijnsbergen et al., 2015). Apart from localised point 
sources in the environment, there are other population-level (i.e. envi-
ronmental) determinants impacting LD incidence, such as neighbour-
hood characteristics (e.g. the percentage of poverty or vacant housing) 
(Gleason et al., 2017; Hunter et al., 2021). Most of these environmental 
determinants have, however, not yet been explored in the Swiss context. 

Weather, one of the better-researched environmental determinants, 
has been strongly associated with the occurrence of LD (Pampaka et al., 
2022; Walker, 2018). Precipitation, high relative humidity (Braeye 
et al., 2020; Fisman et al., 2005; Gleason et al., 2016; Halsby et al., 2014; 
Karagiannis et al., 2009; Ricketts et al., 2009; Simmering et al., 2017) 
and warm temperatures (Beauté et al., 2016; Brandsema et al., 2014; 
Conza et al., 2013; Halsby et al., 2014; Karagiannis et al., 2009; Park 
et al., 2019; Simmering et al., 2017) before the disease onset were often 
reported as important risk factors. Other relevant risk factors that were 
less often identified included atmospheric pressure (Beauté et al., 2016; 
Gleason et al., 2016), low wind speed (Braeye et al., 2020; Gleason et al., 
2016), high dew point and low daily visibility (Gleason et al., 2016). 
High vapour pressure was reported as a significant risk factor by Conza 
et al. (2013). Yet, temperature, relative humidity and vapour pressure 
are all closely interlinked and most studies included relative humidity in 
their investigation rather than vapour pressure. Most of the studies faced 
similar limitations: Vapour pressure and temperature are almost 
perfectly correlated strongly hampering disentangling individual asso-
ciation with LD incidence. In addition, most of them had to accept 
limitations in spatial resolution, as the exposure data came from a 
limited number of weather stations and/or were averaged over a larger 
area. Lastly, the variable incubation period of LD of 2–14 days (Cunha 
et al., 2016), together with the high correlation between consecutive 
days’ temperature and similar weather variables, make it difficult to 
select an appropriate timeframe for which an association with weather 
may be relevant. Most studies either calculated the odds ratio separately 
for each day or calculated the odds ratio averaged over a given time 
window. While the a priori definition of these windows can affect the 
observed associations, these models are also subject to exposure 
misclassification and autocorrelation (Braeye et al., 2020). 

Despite the evidence that ambient air pollution has both short- and 
long-term effects on respiratory health (EPA US, 2016; EPA US, 2019) 
and the risk of respiratory infections (WHO, 2021), the role of air 
pollution in LD incidence has received little study, both, alone and in 
association with weather (EPA US, 2016; EPA US, 2019). One previous 
study investigated the short-term impact of particulate matter (PM) on 
LD in Portugal and attributed part of a larger LD outbreak to a Saharan 
dust storm that yielded high PM10 concentrations and favoured aerosol 
formation (Russo et al., 2018). As ambient air pollution is a complex 
mixture of compounds including PM and volatile pollutants, such as NOx 
or ozone (O3), it is often difficult to disentangle the harmful effects of 
different pollutants individually. Similarly, the strong association be-
tween weather and air pollution makes it difficult to estimate interaction 
and causal associations concerning LD infections (Bäumer and Vogel, 
2007; De Sario et al., 2013). 

In Switzerland, LD is included in the national surveillance system for 
infectious diseases and case numbers doubled in the last decade reaching 

approximately 560 cases in 2021 (BAG, 2022b). Similar to other coun-
tries, the cause for the increase remains widely unknown, but distinct 
epidemiological features such as a pronounced seasonality with most 
cases occurring between June and September are observed (Fischer 
et al., 2022b). There is also a clear regional distribution of cases in 
Switzerland (Fischer et al., 2022b) with the southern canton of Ticino 
constantly reporting the highest notification rates in the country. The 
reason for this divergence is unclear, yet studies on the positivity rate 
and physicians’ testing behaviour suggest that this is not due to a dif-
ference in testing and reporting behaviour alone (Fischer et al., 2020, 
2022a). In Switzerland, the Alps act as a barrier between the South and 
the North of the country. Hence, the regions north of the Alps are 
influenced by the Atlantic Ocean resulting in mild, humid winters and 
drier summers, while the southern region is influenced by the Medi-
terranean Sea resulting in even milder winters and warm and humid 
summers. One study investigated the difference in incidence and 
weather between Ticino and a region north of the Swiss Alps and found 
that higher vapour pressure in Ticino significantly increased the risk of 
developing LD (Conza et al., 2013). While air pollution has strongly 
decreased in Switzerland since 1985 (BAFU, 2021), ground level con-
centration limits are still surpassed regularly, particularly for tropo-
spheric ozone (BAFU, 2021). The daily thresholds for PM are also 
exceeded multiple times each year, and the highest measurements are 
being recorded in Ticino. Gaining evidence on the potential role of air 
pollution in LD incidence is, therefore, particularly relevant to inform 
future public health policies. 

The aim of this study was to understand the role of environmental 
factors on the reported number of community-acquired LD cases in 
Switzerland. We conducted a series of comprehensive analyses exploit-
ing the Swiss LD notification database in conjunction with detailed 
spatial data to: (i) understand the spatial distribution of LD cases at 
cantonal and district levels and identify spatial clusters of LD; (ii) 
elucidate the ecological determinants of LD and (iii) study the associa-
tion of short-term weather and air pollution on LD incidence. The latter 
used a case-crossover design with unaggregated case and exposure data 
as well as distributed non-linear lag models (DLNMs) to address the 
common shortfalls of weather-association studies and to achieve high 
temporal and spatial resolution across Switzerland. An overview of the 
analytical approaches is depicted in Fig. 1. 

2. Methods 

2.1. Study design, Legionnaires’ disease notification data sources, access 
and processing 

This is a longitudinal retrospective study utilising routinely health 
data for LD collected from the National Notification System for Infec-
tious Diseases (NNSID) in Switzerland. While notification rates also 
measure case capture, these estimates are usually the closest approxi-
mation to the true incidence of the disease, and the terms are, therefore, 
often used interchangeably in this context Braeye et al. (2020); BAG, 
2022a; Conza et al. (2013). We considered disease notifications from 
January 1, 2017 to November 19, 2021. We applied the case definition 
of the Federal Office of Public Health (FOPH) (Gysin, 2018) and 
included only confirmed and probable community-acquired LD cases for 
the analysis as a proxy for disease incidence. As our analyses ultimately 
lead to an individual-level analysis in relation to environmental expo-
sures around the home location, we excluded cases where the suspected 
exposure occurred elsewhere, such as travel-associated, nosocomial and 
occupational LD cases. Further, we excluded all cases with residency 
outside of Switzerland and cases with missing demographic information 
(age and sex). Residential information was geocoded using the geo-
coding tool of the Federal Office of Topography (swisstopo) (Federal 
Office of Topography (swisstopo), 2019), and cases without known 
residency at district-level were excluded. 
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2.2. Exposure data 

2.2.1. Environmental and population-level determinants 
For the ecological model, we compiled the geolocations of the 

following suspected LD exposure sources and population-level de-
terminants and calculated the average ‘exposure’ levels aggregated at 
district-level: freshwater bodies, air pollution and weather, wastewater 
treatment plants, composting plants, socio-economic position and age of 
the population, degree of urbanisation, land use and population density. 
More details on the data used for the ecological model is summarised in 
Table A1 in the supplementary , including data source, temporal and 
spatial resolution. 

2.2.2. Meteorological and air pollution data 
Meteorological data were obtained from the Federal Office for 

Meteorology (MeteoSwiss) for daily mean air temperature 2 m above 
ground, daily mean relative air humidity 2 m above ground, daily total 
precipitation, daily mean vapour pressure 2 m above ground, daily mean 
wind speed (scalar), daily maximal gust peak (1 s), and daily mean at-
mospheric pressure at barometric altitude (QFE). Data were obtained for 
191 weather stations in Switzerland for the timeframe from November 
1, 2016 until November 19, 2021. Meteorological data were checked for 
implausible values and outliers. Outliers were defined as measured 

values that deviated more than a predefined cut-off value (e.g. 20 ◦C for 
temperature) from predicted values. The prediction models were based 
on spatial coordinates, altitude and the daily median of the respective 
weather parameter across all weather stations included in the study as 
fixed effects and the site id of the weather station as random intercept. 

We omitted monitoring stations with less than 75% data availability 
for precipitation and 80% data availability for all other weather vari-
ables. For the remaining stations, missing daily values of each variable 
were imputed using information from the meteorological stations with 
complete data (Table A2). To impute missing daily exposure values, we 
fitted separate linear regression models for each monitoring station and 
variable using daily values from all stations with complete data and 
including month, year and Julian day as fixed effects (Equation (1)). The 
models’ performance was assessed by calculating the R2 and adjusted R2 

comparing the imputed and measured variable values. In addition, 
temporal evolution of the imputed values were visually assessed for each 
monitoring station (example in Fig. A1). Finally, all missing weather 
values were replaced by the imputed values. 

Wimp = β0 + β1 × month + β2 × year + β3 × ordinal day + β4 × W4 + …

+ βn × Wn

(1) 

Fig. 1. Overview of the analytical approaches presented in this paper. All analysis were based on the Swiss national notification data for Legionnaires’ disease 
from 2017 to 2021. The first analyses comprised of a descriptive and hot spot analysis. The second analyses was an ecological regression model using various 
environmental exposures (such as wastewater treatment plant locations or degree of urbanisation). The third analysis was a case-crossover analysis on the short-term 
association of weather with LD cases. The third study incorporated a sensitivity analysis restricted to 2019 but incorporating air pollution data (daily NO2 levels). 
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where Wimp. is the imputed weather value, and W are the weather values 
at monitoring stations with complete data. 

All weather estimates were extracted at the home location of LD 
cases, defined as the values from the weather station closest to their 
home location for each weather variable individually. If the altitude 
difference between the home location and weather station was over 500 
m, the second-closest weather station was selected. Only, if the second- 
closest station also had more than 500 m in altitude difference, the 
closest station remained selected. 

Mean daily NO2 concentrations were extracted for each case’s home 
location from the spatio-temporal model estimating historical NO2 
concentrations in Switzerland at a fine resolution (100 × 100 m; daily 
estimates from 2005 to 2016, and 2019) described by de Hoogh et al. (de 
Hoogh et al., 2019). As the address-level information for LD cases was 
only available for 2017–2021, we could investigate the association be-
tween NO2 concentration and LD case numbers only for the year 2019. 

2.3. Statistical methods 

2.3.1. Descriptive and hot spot analyses 
Descriptive analysis of data content and data quality were performed 

with the statistical software R Version 4.0.3 (R Core Team, 2020), Stata 
Version 16 (StataCorp., 2019) and ArcGIS Version 10.6.1 (ESRI, 2011). 
Notification rates, defined as the number of notified cases per 100′000 
resident population, were calculated using publicly available population 
statistics from the Federal Statistical Office (FSO) (Bundesamt für Sta-
tistik BFS, 2021). We used the Pearson correlation to assess correlation 
between the weather variables. P-values <0.05 were considered statis-
tically significant. 

The hot spot analysis was conducted using two global statistics 
(Getis-Ord General G and Global Moran’s I) and two local statistics 
(Getis-Ord Gi × and Local Moran’s I) and was based on the sex- and age- 
standardised notification rates for LD on district level (n = 143). Hot 
spots denote regions, where the notification rate is higher than the ex-
pected rate if the rates would be randomly distributed. Relationships 
between districts were determined via ‘zone of indifference’, and dis-
tance bands selected using ‘Incremental Spatial Autocorrelation’ to 
ensure each district had at least one neighbour. The Local Moran’s I 

Table 1 
Legionnaires’ disease cases and annual crude and age-and sex-adjusted notifi-
cation rates in Switzerland (2017–2021.   

Total (N =
2047) 

Annual notification rate per 100,000 
population 

Crude Age- and sex- 
adjusted 

Sex 
Female 644 (31.5%) 3.0 (2.8, 3.2) 2.8 (2.6, 3.0) 
Male 1403 (68.5%) 6.6 (6.2, 6.9) 7.0 (6.7, 7.4) 

Year 
2017 412 (20.1%) 4.9 (4.4, 5.4) 4.9 (4.5, 5.4) 
2018 410 (20.0%) 4.8 (4.4, 5.3) 4.8 (4.4, 5.3) 
2019 428 (20.9%) 5.0 (4.5, 5.5) 5.0 (4.5, 5.5) 
2020 351 (17.1%) 4.1 (3.6, 4.5) 4.0 (3.6, 4.5) 
2021 446 (21.8%) 5.1 (4.7, 5.6) 5.1 (4.6, 5.6) 

Age in years 
<20 3 (0.1%) 0.03 (0.01, 

0.1) 
0.03 (0.01, 0.1) 

20–49 306 (14.9%) 1.8 (1.6, 2.0) 1.7 (1.6, 2.0) 
50–79 1315 (64.2%) 8.9 (8.4, 9.4) 8.9 (8.5, 9.4) 
>80 423 (20.7%) 18.8 (17.1, 

20.7) 
21.2 (19.1, 21.3) 

Seasona 

Spring (Mar–May) 340 (16.6%) 3.2 (2.8, 3.5) – 
Summer (Jun–Aug) 825 (40.3%) 7.7 (7.2, 8.2) – 
Fall (Sep–Nov) 557 (27.2%) 5.2 (4.8, 5.6) – 
Winter (Dec–Feb) 325 (15.9%) 3.0 (2.7, 3.4) – 

Greater region 
Central Switzerland 168 (8.2%) 4.1 (3.5, 4.8) 3.8 (3.5, 4.7) 
Eastern Switzerland 183 (8.9%) 3.1 (2.7, 3.6) 3.0 (2.6, 3.5) 
Espace Mittelland 431 (21.1%) 4.6 (4.2, 5.0) 4.4 (4.0, 4.9) 
Lake Geneva Region 375 (18.3%) 4.5 (4.1, 5.0) 4.8 (4.4, 5.4) 
Northwestern 
Switzerland 

329 (16.1%) 5.6 (5.0, 6.3) 5.5 (4.9, 6.1) 

Zurich 274 (13.4%) 3.6 (3.2, 4.0) 3.8 (3.4, 4.3) 
Ticino 287 (14.0%) 16.3 (14.5, 

18.3) 
14.3 (12.6, 16.1)  

a Notification rates were calculated using the annual population, hence there 
is no age- or sex difference between the seasons and only the crude rates are 
shown. 

Table 2 
Output for DLNM models using conditional logistic regression. Odds ratios and 95% confidence intervals for single-exposure and multi-exposure models for each 
weather variable. Due to collinearity, two models were constructed, once with temperature and the other with vapour pressure. All estimates stem from the mean 
temperature model (Model 1), except vapour pressure, which is based on the vapour pressure model (Model 2). The centre depicts the reference value selected for the 
prediction. The value depicts the value for which the overall odds ratio are estimates.  

Variable Centre Value Lag period Single-exposure Multi-exposure 

OR 95% CI OR 95% CI 

Temperature 0 ◦C 20 ◦C 2–6 days 0.91 (0.59, 1.42) 1.10 (0.69, 1.74) 
6–14 days 1.93 (1.20, 3.10) 2.83 (1.70, 4.70) 
14–21 days 1.77 (1.13, 2.79) 1.67 (1.01, 2.75) 

Relative humidity 0.762 0.952 2–6 days 1.11 (1.01, 1.22) 1.08 (0.95, 1.23) 
6–14 days 1.43 (1.22, 1.68) 1.38 (1.11, 1.72) 
14–21 days 0.90 (0.78, 1.05) 1.06 (0.86, 1.31) 

Precipitation 0 mm 10 mm 2–6 days 1.11 (1.01, 1.21) 1.05 (0.93, 1.19) 
6–14 days 1.47 (1.25, 1.73) 1.21 (0.98, 1.49) 
14–21 days 1.04 (0.88, 1.21) 1.01 (0.82, 1.24) 

Vapour pressurea 9.2 hPa 18.1 hPa 2–6 days 1.02 (0.87, 1.20) 1.00 (0.84, 1.19) 
6–14 days 1.59 (1.22, 2.08) 1.52 (1.15, 2.01) 
14–21 days 1.30 (1.01, 1.68) 1.31 (1.00, 1.71) 

Wind speed 0 m/s 20 m/s 2–6 days 0.97 (0.72, 1.31) –  
6–14 days 0.99 (0.59, 1.67) –  
14–21 days 0.87 (0.53, 1.43) –  

Maximal gust 0 m/s 20 m/s 2–6 days 0.98 (0.90, 1.06) 0.95 (0.85, 1.05) 
6–14 days 1.03 (0.90, 1.19) 0.97 (0.82, 1.16) 
14–21 days 0.99 (0.86, 1.13) 1.04 (0.88, 1.23) 

Atmospheric pressure 964.6 hPa 986.8 hPa 2–6 days 0.96 (0.78, 1.18) 0.89 (0.70, 1.15) 
6–14 days 0.59 (0.42, 0.83) 0.70 (0.47, 1.05) 
14–21 days 1.00 (0.70, 1.42) 0.94 (0.62, 1.42)  

a Model 2 instead of model 1. 
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analysis was conducted with 9′999 permutations. A false discovery rate 
(FDR) correction accounted for multiple testing in both local analyses. 

2.3.2. Ecological model (district level) 
An exploratory analysis using an ecological model was performed to 

investigate the association of LD case frequency with various environ-
mental factors, including weather, air pollution (PM2.5 and NO2), data 
on the built environment (compost facilities, wastewater treatment 
plants, land use, urbanisation grade, population density), natural spaces 
(total shoreline and river length), and social environment (area-level 
Swiss socioeconomic position (Swiss-SEP) and mean population age). 
We used univariable and multivariable negative binomial regression 

models to explore associations between LD case counts per district 
(adjusted for the population size) and exposure source densities (for 
count data; e.g. infrastructural exposure sources) or values (e.g. mean 
age of the population) using the log-transformed population size as 
offset (Table A1). Separate models were developed for PM2.5 and NO2. 
All models were adjusted for the number of compost facilities and 
wastewater treatment plants, length of shoreline and rivers per district. 
As well as the mean age, mean PM2.5 and NO2 levels, mean temperature, 
mean relative humidity and mean precipitation per district and land 
coverage ratio and category of degree of urbanisation and Swiss-SEP. 

Fig. 2. Illustrative example of the time-stratified case-crossover study design and the data. The first panel shows the case (black) and three control windows 
(white), which were chosen randomly before or after the case within the same month, for one individual. The lower panels show the time series of the weather at the 
residential address of this case. 
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2.3.3. Case-crossover design (individual level) 
The ecological model described above is based on aggregated data at 

the temporal and district levels, which help inform about relevant 
characteristics of the regions with increased LD notification rates and 
potential environmental candidates that can drive these differences. 
However, remaining bias resulting from regional differences not 
captured in the models cannot be avoided with this approach. To 
address this issue, we used LD infection data at the individual level and 
conducted a case-crossover study investigating the short-term impact of 
a set of meteorological (and air pollution) exposures at fine spatial and 
temporal resolution. The case-crossover is a self-matched study design 
where each exposure levels during the ‘hazard period’ (the period before 
the adverse outcome occurred) is compared with exposures in other 
periods where the case did not occur (disease-free period) (Fig. 2). The 
self-matching procedure limits the risk of potential confounding by time- 
invariant characteristics (e.g. sex, socio-economic position, chronic 
comorbidities and other unknown regional confounding suggested by 
the high heterogeneity in regional notification rates), which are typical 
sources of bias in other observational study designs and ecological 
studies. 

To avoid any risk of bias due to seasonality and time-trends, the 
control periods were selected using a time-stratified sampling approach 
matched on the same weekday within the same month, leading to four to 
five control events for each case event, as previously described by Janes 
and colleagues. (Janes et al., 2005). 

We conducted single- and multi-exposure conditional logistic 
regression to estimate the association between individual weather ex-
posures and the risk of infection by Legionella. First, we fit single- 
exposure DLNMs to estimate the association between individual expo-
sures and the risk of infection up to 21 days prior to the onset of clinical 
manifestations (using the R package dlnm (Gasparrini, 2011; Gasparrini 
and Armstrong, 2013)). These lag periods were chosen as 21 days are a 
typical lag used when analysing temperature and weather effects on 
hospital admission and mortality (Gasparrini et al., 2015; Zhai et al., 
2021). Further, it captures the typical incubation days for LD of 2–14 
days (Cunha et al., 2016). 

The lag functions were specified as a natural spline with one to three 
equally spaced knots on the logarithmic scale. The exposure-response 
functions were specified as: (i) a linear term for exposures with an ex-
pected linear association with LD (precipitation, gust, atmospheric 
pressure, relative humidity); (ii) a b-spline with two knots (50th and 
75th percentiles of the annual distribution) for mean temperature; and 
(iii) a b-spline (1 knot at the median of the annual distribution) for 
vapour pressure. Models with the best fit were selected as the combi-
nation of lag- and exposure-response functions that led to the lowest 
value for the Akaike information criterion (AIC). Given the high corre-
lation between mean daily temperature and mean daily vapour pressure 
(Pearson’s correlation r = 0.90), we constructed two separate multi- 
exposure models. All models were adjusted for regional school holi-
days, defined as the total number of days of holidays during the incu-
bation period to account for travelling. We did not add a variable 
adjusting for the effects of the COVID-19 pandemic, as seasonal time- 
trends are naturally accounted for by the study design. 

For easier interpretation, we estimated the odds ratio (OR) of 
infection as the ratio between the odds at 0 and the odds at a sensible 
value: for mean temperature 20 ◦C, precipitation 10 mm, wind speed 20 
m/s and maximal gust 20 m/s. For variables that only take positive 
values (atmospheric pressure, mean relative humidity and vapour 
pressure), we estimated the OR as the deviation from the median to the 
5th and 95th percentiles of the annual distribution. To disentangle the 
role of environmental and weather conditions on different phases of the 
disease transmission, we present the overall odds ratios for three a priori 
selected exposure windows: ‘Early incubation/shortly before disease 
onset’ (lag 2–6), ‘Prolonged incubation period’ (lag 6–14) and ‘Before 
incubation’ (lag 14–21). 

2.3.4. Sensitivity analyses 
We conducted the following three sensitivity analyses: (i) to validate 

the estimates from our DLNM models, we built ‘simple’ models using 
each weather variable’s average over the most relevant lag days (as 
identified by the DLNM) as exposure variable and conducted single and 
multi-exposure conditional logistic regression adjusted for school holi-
days. Further, these simple models provided estimates of the variation 
inflation factor and overall correlation between the different exposures, 
and helped inform and verify the validity of our DLNM multi-exposure 
models. (ii) Air pollution can change rapidly over time and is partly 
correlated with meteorological conditions, making it a possible con-
founding factor for our analyses. To rule out this potential bias and 
explore the effect of air pollution on LD, we considered data from 2019 
for which individual daily NO2 estimates were available. We compared 
our results from the DLNM and ‘simple’ models with and without 
additional adjustment for NO2; and, (iii) Ticino has reportedly the 
highest LD notification rates and unique weather conditions. To ensure 
that no other time-variant factors special to Ticino bias our results, we 
ran a sensitivity analysis excluding all cases from Ticino. 

2.4. Ethical approval 

The study was conducted under the Epidemics Act (SR 818.101) (The 
Federal Assembly of the Swiss Confederation, 2016). The study was 
submitted to the Ethics Committee Northwest and Central Switzerland 
(EKNZ), and was evaluated to be outside the scope of the Human 
Research Act (SR 810.30) (The Swiss Federal Council, 2013) and, 
therefore, does not require ethical approval. 

3. Results 

3.1. Legionnaires’ disease cases 2017–2021, description and hot-spot- 
analysis 

Between 2017 and 2021, 2854 cases of LD were reported in 
Switzerland. We excluded 376 cases with a ‘possible’ (N = 151) or 
missing case definition (N = 135), and 405 cases due to being cat-
egorised as ‘travel-associated’, ‘nosocomial’ or ‘occupation-associated’. 
An additional 20 cases were excluded for the following reasons: missing 
sex (N = 1), district (N = 11) or non-Swiss residency (N = 8). Six cases 
occurred after November 19, 2021 and were, thus, excluded from the 
analyses. In total, 2047 cases of LD with an onset between January 1, 
2017 and November 19, 2021 were included in the study (Table 1). 
Among the cases, 68.5% were males and 84.9% were over the age of 50 
years. Most cases occurred in the summer months between June to 
August (40.3%). 

The annual age-and sex adjusted notification rates were highest in 
the greater region (NUTS-2 level, N = 7 in Switzerland) of Ticino with 
14.3 cases/100,000 population (CI: 12.6, 16.0). The lowest notification 
rates were observed in the region of Zurich (3.8, CI: 3.3, 4.3). In the 
canton of Ticino, the district of Lugano (20.6, CI: 17.7, 24.0) had a 33% 
higher notification rate than the district of Mendrisio with the second 
highest notification rate (14.0, CI: 10.0, 19.3) (Fig. 3A and B). Hot spot 
analyses, with the two local statistics Local Moran’s I and Getis-Ord Gi*, 
both showed a significantly elevated notification rate in Ticino (Fig. 3C 
and D). 

3.2. Ecological model to identify spatial determinants (2017–2020) 

We included 1603 LD cases between 2017 and 2020. Since both 
PM2.5 and NO2 were statistically significant in the univariable model, 
and there is limited existing literature on the association of air pollution 
and LD occurrence, we developed one separate model for each air 
pollutant. Results from both multivariable regression analyses suggest 
that the relative humidity is negatively associated with LD occurrence 
(Figure A3). Higher air pollution concentrations (PM2.5 and NO2) were 
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Fig. 3. Distribution of Legionnaires’ disease cases in Switzerland from 2017 to 2021. (A) Average annual notification rate across cantons (n = 26). (B) Average 
annual notification rate across districts (n = 143). (C) Cluster analysis using Getis-Ord Gi × based on sex- and age-adjusted notification rates per district. (D) Cluster 
analysis using Local Moran’s I based on sex- and age-adjusted notification rates per district. 

Fig. 4. Assignment of weather exposure to Legionnaires’ disease cases (2017–2021) on the example of mean daily temperature. (A) Map of all included 
Legionnaires’ disease cases (2017–2021) in green and included weather stations measuring temperature (black triangles). (B) Linear distance and altitude difference 
of each case to the selected weather station measuring temperature. 
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strongly associated with LD occurrence. Further, lower socio-economic 
position and older age were positively associated with LD occurrence 
on a district-level. Infrastructural and environmental exposures (e.g. 
wastewater treatment plants, lakes) were not found to be associated 
with LD case numbers, but effects could have been masked by aggre-
gation across a larger area. 

3.3. Case-crossover analysis on short-term determinants 

3.3.1. Weather in Switzerland (2017–2021) 
Weather data were linked to cases’ individual locations based on 

proximity. For most cases (88.5%), a residential address was reported 
and used. If not available (11.5%), the geometric centroid of the re-
ported residential municipality was used as address. 

From the data of the seven weather variables of the 191 stations, only 
one value was implausible and set to missing. On average, the imputa-
tion models for missing weather data performed well (0.91 adjusted R2) 
and only a few stations for the variables ‘gust’ and ‘maximal relative 
humidity’ scored an R2 lower than 0.6 (Table A2). The median distance 
and median altitude difference of individual cases to the linked station 
was 5.4 km (range 0.1–32.6 km), respective 37 m (range: 0–630 m) 
(Fig. 4). 

In general, temperatures are cooler in the alpine regions all-year. 
Across Switzerland, Ticino is subject to most heavy rain events. The 
year 2018 was exceptionally warm with heat periods above 30 ◦C across 
Switzerland and notable lack of rain during summer. The year 2019 had 
an equally hot summer but with more precipitation. The year 2020 was 
characterised by a mild winter, another hot summer and heavy rain 
events in Ticino (August and October) and the Lake Geneva region, 
Berne, and parts of Graubünden (October only). In 2021, June and July 
were exceptionally wet across Switzerland with heavy rainfall in Ticino 
and several flooding north of the Alps. Table A3 in the Appendix pro-
vides an overview of the weather conditions from the stations included 
in our study. 

At address-level resolution, daily values of (i) mean vapour pressure 
and mean temperature and (ii) gust and wind speed (r = 0.79) were 
strongly correlated with each other (Pearson’s correlation r = 0.90). 
Weaker correlated were mean temperature and mean relative humidity 
(r = − 0.31), atmospheric pressure and vapour pressure (r = 0.31), and 
precipitation and relative humidity (r = 0.31). 

3.3.2. The association between weather and Legionnaires’ disease case 
occurrence (2017–2021) 

We estimated the risk of Legionella infection for seven weather var-
iables using single-exposure DLNM models (Table 2). Six of these vari-
ables were included in a multi-exposure model which also included 
either mean temperature (Model 1) or mean vapour pressure (Model 2), 
due to their high collinearity. We validated the models running simple 
conditional logistic regressions over either the statistically significant 
lag days or selected lag periods if no significant lag days were observed: 
For wind speed and maximum gust, we tested the lag windows proposed 
by Fisman et al. and selected the one with the best model fit according to 
the AIC (1–5 days) (Table A4 and Figure A4) (Fisman et al., 2005). 
Overall, the results of the DLNM and simple models were consistent. 

Fig. 5 shows the lag structure of 21 days for each weather variable in 
both the single-exposure and multi-exposure model (left-hand panel), 
and the cumulative odds ratio of the multi-exposure model for the 
different lag periods (right-hand panel). For example, Fig. 5D shows the 
DLNM outputs for daily mean vapour pressure. The left-hand panel 
depicts the OR for an increase from 9.2 to 18.1 hPa across lags 0 to 21. 
Both the single-exposure and multi-exposure model show that vapour 
pressure has increased ORs 7–17 days before disease onset. The right- 
hand panel depicts the cumulative OR for each lag period ‘2–6 lag 
days before disease onset’, ‘6–14 lag days’ and ‘14–21 lag days’. The 
strongest associations can be seen for 6–14 lag days before the exposure, 
where the OR is around 1.3 (CI: 1.1–1.4) at 15 hPa daily mean vapour 

pressure. 
The mean temperature showed a significantly increased OR at 20 ◦C 

compared to the baseline at 0 ◦C (OR 1.58, CI: 1.05, 2.37) shortly before 
the disease onset (lag 0–2 prior to first symptoms). Followed by stronger 
and longer lasting associations at the higher end of the incubation period 
(lag 6–14) and before the incubation period (lag 14–21) (Fig. 5A). 
Vapour pressure showed the largest OR in the single-exposure models in 
the 6–21 days before onset of the disease. Relative humidity and pre-
cipitation were significantly associated with LD notifications during the 
whole incubation time. Atmospheric pressure was only found statisti-
cally significant late in the incubation time (6–14 lag days) and the only 
weather variable that was negatively associated with LD relative risk. 

The estimated direction of association remained consistent in the 
multi-exposure model. Mean temperature showed a large increase in 
effect size (OR 2.83, CI: 1.70–4.70), while precipitation and atmospheric 
pressure were no longer significantly associated. 

3.3.3. Sensitivity analysis including daily mean NO2 (2019) 
Only for the year 2019, data for both, LD case residential addresses 

and NO2 concentrations, were available. Therefore, for a subset of 426 
LD cases, the associations with air pollution could be analysed using the 
same methodology as for the weather variables. 

With data restricted to 2019, the analysis (including weather) does 
not have enough data points to lead to a conclusive result and should be 
interpreted with caution (Table A5). NO2 was most strongly correlated 
with temperature (r = − 0.4) and vapour pressure (r = − 0.36). In the 
single-exposure models, only relative humidity and precipitation 
remained significant with relative humidity having an OR of 1.23 (CI: 
1.00, 1.52) 2–6 lag days before disease onset and an OR of 1.75 (CI: 1.24, 
2.47) 6–14 days before disease onset. Ten millimetres of precipitation 
corresponded to an OR of 1.69 (CI: 1.12, 2.54) 6–14 days before disease 
onset. The direction of association, however, remained consistent with 
the analysis of the full dataset. The 95% percentile of NO2 (37.3 μg/m3) 
was negatively associated, though statistically not significant, during the 
incubation time, but positively associated before the incubation, 
compared to the median (16.5 μg/m3). 

In the multi-exposure model, the association of relative humidity and 
precipitation with LD diminished, yet atmospheric pressure showed an 
OR of 0.29 (CI: 0.10, 0.89) for the 95th percentile compared to the 
median. NO2 was consistently but non-significantly associated with LD 
occurrence (Figure A5). 

3.3.4. Sensitivity analysis excluding all cases from Ticino (2017–2021) 
The sensitivity analysis excluding Ticino (1760 LD cases) showed 

largely consistent estimates with the full data analyses. The largest 
change was the increasing association of precipitation with LD case 
reporting in the multi-exposure model at lag 6–14 with a 58% (CI: 
19–110%) increase in the odds in LD notification per 10 mm increase in 
daily precipitation (Table A6). 

4. Discussion 

In this study, we provide a comprehensive overview of the spatial 
distribution and the environmental determinants of reported LD cases in 
Switzerland for the years 2017–2021. Overall, our models supports the 
notion that a specific sequence of weather events - warm weather fol-
lowed by high humidity, leads to the highest risk for contracting LD 
(Beauté et al., 2016; Brandsema et al., 2014; Ricketts et al., 2009). 
Understanding the impact of weather on infectious diseases, such as LD 
supports the interpretation of regional distribution or seasonality of 
disease. It also opens opportunities for climate- and weather driven early 
warning systems (Morin et al., 2018) and could guide diagnostic testing 
and treatment preferences for pneumonia patients. 
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Fig. 5. Short-term associations of seven weather variables with LD onset (2017–2021). DLNM model output for (A) daily mean temperature, (B) daily mean 
relative humidity, (C) daily total precipitation, (D) daily mean vapour pressure, (E) daily maximal gust peak and (F) daily mean atmospheric pressure (QFE). The 
right-hand figure always depicts the lag structure across 21 days before the Legionnaires’ disease onset. The left-hand figure depicts the overall odds ratio (OR) for 
three exposure windows: early incubation (lag 2–6), late incubation (lag 6–14) and before incubation (lag 14–21). The multi-exposure models included daily mean 
relative humidity, daily total precipitation, daily maximal gust peak and daily mean atmospheric pressure (QFE) and either daily mean temperature or daily mean 
vapour pressure, as well as a term adjusting for regional school holidays. 

F.B. Fischer et al.                                                                                                                                                                                                                               



Environmental Research 233 (2023) 116327

10

4.1. The impact of weather on Legionnaires’ disease notification rates 

Overall, temperature, relative humidity and vapour pressure were 
associated with the highest risk increase on case occurrence. These ob-
servations are in line with previous studies identifying wet and warm 
weather to be associated with LD case occurrence (Braeye et al., 2020; 
Fisman et al., 2005; Pampaka et al., 2022; Ricketts et al., 2009). In 
particular, our findings confirm the observations of Conza and col-
leagues of 2013, who analysed the weather conditions in relation to LD 
incidence of two Swiss regions aggregated by month (Conza et al., 
2013). Our study contributes in translating these local conclusions to the 
national level and by using DLNM models allows a more detailed un-
derstanding of the time-lagged response of the different weather 
variables. 

Weather can affect case numbers in various ways, such as (i) 
increasing the susceptibility of the population towards an infection with 
Legionella spp. on the long term; (ii) increasing the current transmission 
rates through increased bacteria concentrations in the environment or 
increased exposure (e.g. more air droplets or change in behaviour) or 
(iii) worsening of symptoms, which results in increased health-seeking 
or referral and, therefore, detection and reporting, as LD is usually 
only diagnosed in hospital. The ‘worsening of symptoms scenario’ is 
expected to present the most immediate impact on LD notifications 
(increased OR on the case day or shortly before). An increased trans-
mission rate could result in an increased OR during or before the incu-
bation period, when the bacteria start to proliferate in the environment. 
An increase in susceptibility would likely show larger ORs during the 
incubation period or on the longer term. Therefore, while our analyses 
are unable to establish any causality, the specific (lag) days for which an 
association with LD incidence is observed can provide meaningful in-
sights into the mechanisms by which weather affects the LD case 
occurrence. 

Temperature was found to have the strongest association with dis-
ease onset early in the incubation period and just before. Consistent with 
our study, Ricketts et al. observed an increased risk of LD associated with 
increasing temperatures with long lag periods, up to three months pre-
ceding LD infections, which is much longer than our investigated time 
frame (Ricketts et al., 2009). This would align with the hypothesis that 
sustained high temperature can warm up small water sources up to 
Legionella’s ideal growth temperatures of 25–45 ◦C. We observed the 
highest OR at 21–22 ◦C during and before the early incubation period. 
Other studies also found a maximal association at this temperature range 
(Beauté et al., 2016; Simmering et al., 2017) that is below Legionella’s 
ideal growth temperature. However, the mean daily temperature used in 
our study is measured in the ambient air 2 m above ground and might 
not represent the actual temperatures in e.g. plumbing and piping. 
Additionally, higher ambient temperatures, i.e. over 24 ◦C seem to 
reduce airborne bacterial survival (Fernstrom and Goldblatt, 2013). 

We also observed an increased association of elevated temperature 
with LD case occurrence just before the case date, which is likely too 
close to the disease onset to fall into the incubation time. The same as-
sociation has also been reported by others (Dunn et al., 2013). These 
short-term relationships have rarely been investigated, but could be 
explained by a worsening of symptoms in previously infected people due 
to hot weather - the highest OR was seen at a mean daily temperature of 
28 ◦C likely prompting people to seek care and leading to LD case 
detection. Mean daily vapour pressure showed similar, yet slightly 
weaker associations than temperature. Vapour pressure is highly 
correlated with temperature; it is, therefore, difficult to disentangle the 
individual contributions of these two weather variables. 

Relative humidity showed the strongest association with LD inci-
dence throughout the incubation time, consistent with the existing 
literature (Conza et al., 2013; Fisman et al., 2005). This shorter lag 
period compared to temperature suggests that humidity may indeed 
increase LD transmission rates. Daily total precipitation was also found 
to be linearly associated with LD occurrence in the single-exposure 

model. Also consistent with our findings, heavy rainfalls were previ-
ously found to be associated with LD occurrence (Mitsui, 2020). How-
ever, the association between precipitation and LD incidence reduced in 
the multi-exposure model. It is likely that the estimated risk of precip-
itation may be confounded by daily mean relative humidity. In turn, the 
association of relative humidity with LD remained significant in both, 
the single-exposure and multi-exposure models. 

Lastly, we found that increasing atmospheric pressure was associated 
with a decrease in the odds of LD infection in the single-exposure model 
but not in the multi-exposure model. This association is likely 
confounded by humidity, which lowers atmospheric pressure (Gleason 
et al., 2016). Furthermore, lower atmospheric pressure is also associated 
with more storms and precipitation. These findings highlight the strong 
interconnection of the different weather variables, which, in turn, 
complicate effect attribution to specific weather variables. It is inter-
esting, however, that another Swiss study found only vapour pressure to 
be associated with LD cases but not relative humidity (Conza et al., 
2013). We found a significant association for all three in the 
multi-exposure models: temperature, relative humidity and vapour 
pressure. While we did not investigate the cumulative effect of different 
weather variables, weather types, i.e. a combination of weather condi-
tions might be the most suitable predictor for LD incidence in practice. 

To date, the dynamics by which weather affects the occurrence of 
cases are poorly understood. Further studies are needed to test our hy-
potheses and identify the mechanisms at work. 

4.2. The role of air pollution 

Given the sparse literature on the association of air pollution with 
LD, we aimed to include air pollution in the case-crossover study as we 
found strong association with LD case numbers per district for both NO2 
and PM2.5 in the ecological model. 

We did not find any significant association between daily air pollu-
tion and LD incidence, using a highly resolved spatiotemporal NO2 
model to estimate exposure. This finding is in part due to a lack of 
power, as only data from 2019 could be investigated. Even other 
investigated weather conditions, such as temperature, that showed 
statistically significant results using data of five years remained incon-
clusive when only using data of a single study year. Additionally, we 
could only use NO2, as a proxy for traffic-related air pollution. Even 
though PM2.5 and NO2 showed a similar strength of association in the 
ecological model, other pollutants (PM or ozone) may play a more 
important role in LD incidence than NO2. A recent study on the effect of 
air pollutants on LD case occurrence observed the strongest effect for 
SO2 six days and two days, and PM10 nine days before case occurrence in 
two different cities (Graham et al., 2023). Data on NO2 was not available 
for this study. 

In contrast to the rather immediate effects observed by Graham et al., 
we found that the associations between NO2 and LD cases in the multi- 
exposure model were stronger at the beginning of the 21-day period 
under study than immediately before the onset of the disease. Coupled 
with the large and significant association observed in the aggregated 
analysis of the ecological model, this finding could suggest that the 
impact of NO2 on detected LD cases is more relevant in mid- and long 
term compared to the more transient effects investigated using our case- 
crossover design. Among the possible mechanisms, exposure to NO2 
could (i) increase the susceptibility to pneumonia in general (e.g. 
through inflammation and epithelial cell damage (Neupane et al., 
2010)); or (ii) increase disease severity, and lead to hospitalisation and 
consequently case detection and notification. Yet, the strong observed 
association of air pollution with LD incidence in the ecological model 
could also stem from an unknown confounder, which occurs primarily in 
Ticino, as this canton has both the highest air pollution and the highest 
LD notification rates in Switzerland (de Hoogh et al., 2019). Such con-
founding was, however, avoided in our case-crossover analyses. 

Based on the large body of evidence of the impacts of weather and air 

F.B. Fischer et al.                                                                                                                                                                                                                               



Environmental Research 233 (2023) 116327

11

pollution on human health including their possible synergetic or con-
founding effects (Vanos et al., 2015), we recommend that future studies 
continue including air pollution in the assessment of weather events on 
LD incidence with a larger time series, and several pollutants including 
NO2, PM and ozone. 

4.3. Topography and the regional distribution of Legionnaires’ disease in 
Switzerland and abroad 

The Ticino region in the South of Switzerland shows the highest 
notification rate of all regions and has been marked a hot spot in the 
spatial hot spot analysis. However, while the notification rate of LD has 
been consistently elevated in Ticino and the discrepancy grew stronger 
in 2015, in recent years the notification rate in Ticino declined, contrary 
to the rates in the other regions across Switzerland (BAG, 2022a). 

The weather in Switzerland is characterised by the Alps dividing the 
country, leading to strong weather differences even within our small 
country. In the ecological model, we saw a negative association of 
relative humidity and LD incidence, which contrasted with the existing 
literature (Fisman et al., 2005; Gleason et al., 2016; Karagiannis et al., 
2009; Ricketts et al., 2009). In the case-crossover study however, our 
results concurred well with the available literature. This discrepancy 
between both study designs could be explained by regional confounding 
in the ecological model using aggregated data at the regional level, 
which is absent in the case-crossover design. Since the alpine regions 
have an overall higher humidity than the rest of Switzerland, but also 
the lowest notification rates, this particular topography of Switzerland is 
likely to have driven this unexpected negative association in the 
ecological model. 

The higher LD notification rate in Ticino could also be explained by 
the higher humidity in this region, together with the more frequent 
occurrence of heavy rainfall events and warmer temperatures. Ticino 
also lies in the area of influence of the Italian Po-valley with one of the 
highest air pollution measurements in Europe, particularly for PM and 
ozone (EEA, 2022). Whether this special geographical and environ-
mental situation explains the LD hotspot in Ticino will need further 
inquiry alongside the assessment on the general effects of air pollution 
on LD using fine-scale air pollution data over several years. 

Weather phenomena and air pollution as potential drivers of LD 
incidence should lead to cross-border effects on the notification numbers 
of LD. While Switzerland stands out with higher notification rates than 
the adjacent neighbouring countries, the clustering of higher rates lies 
towards the area south of the Alps. In addition, Switzerland’s case 
numbers are not reported through the European Surveillance System 
managed by the ECDC and are, therefore, missing in the annual epide-
miological reports. Looking at the newest report of 2020, only Slovenia, 
being also part of the alpine belt, had a higher notification rate than 
Switzerland (ECDC, 2022). Part of this variation is probably depend on 
health systems factors, such as in Southern Italy where underdiagnosing 
and underreporting have been previously reported (Riccò et al., 2021; 
Rota et al., 2013). 

Since extreme weather conditions such as increasing warm weather 
and heavy rain events are expected to become more frequent (Bindi 
et al., 2018), LD infections are likely to increase in future years. It is, 
therefore, important that the drivers of LD and their interactions are 
being understood, especially focussing on the interplay of various 
correlated weather conditions and air pollution. Future environmental 
and public health policies focussing on the mitigation of air pollution, 
together with effective climate actions will be essential to reduce the 
burden of non-communicable diseases, but also of infectious diseases 
such as LD. 

4.4. Strengths and limitations 

Similar to other studies on Legionella epidemiology, all our analyses 
use the notification data as a proxy for LD incidence, which may 

influence findings on regional differences in case of differential testing 
strategies. The interpretation and validity of the Swiss notification data 
on LD has previously been discussed in several studies on the positivity 
rate (Fischer et al., 2020), physician case finding (Fischer et al., 2022a) 
and the notification data itself (Fischer et al., 2022b). Based on these 
works, we presume that regional differences in incidence are real. 
Nevertheless, discussing our results and their implications, we are 
mindful that our estimates represent a combination of case detection 
and incidence. Furthermore, our results on the impact of meteorological 
factors resulting from the case-crossover approach (objective 3) are 
unlikely to be affected by potential regional differences, which supports 
the plausibility of our findings. In addition, we performed a sensitivity 
analysis excluding cases from Ticino, where detection bias is most likely, 
yielding robust estimates. 

The combination of several analytical approaches compensated for 
limitations of a single study design. The ecological design is useful to 
understand geographical distributions and LD clusters over time, the 
association between long-term environmental exposures and case 
numbers might be confounded by further regional, geographic or 
topographic characteristics, such as health systems performance or 
altitude. The case-crossover study removed between-individual expo-
sure variability and potential confounding through time-invariant 
characteristics. DLNMs are particularly useful to study the association 
of weather with LD incidence due to the models’ ability to investigate 
sequences and different time delays (lags) (Braeye et al., 2020). Yet, 
while DLNMs were found to be well suited for these types of analyses, 
they might be subject to overfitting. To validate our model fit, we built 
ordinary simple models aggregating over the significant lag days and 
using a conditional logistic regression. 

The case-crossover study design required the assumption that the 
place of residency is the source of infection for all community-acquired 
LD cases. However, the spatial scale of meteorological variables limits 
the exposure misclassification. Further, while the case-crossover design 
inherently takes into account time-invariant confounders, time-variant 
confounders need to be specifically adjusted for. While we did include 
a term in the model to approximate changes in LD notification rates due 
to travels, we cannot exclude that other varying environmental factors 
may influence our results. 

The incubation time of up to 14 days for LD is rather long. Adding 
some additional time to account for changes in the environment before 
the incubation the time under investigation was expanded to 21 days. 
With such a long timeframe, meaningful associations could be diluted. 
Therefore, we decided to group the 21 days into three periods: ‘early 
incubation/shortly before disease onset’, ‘prolonged incubation period’ 
and ‘before incubation’. While the grouping does influence the pre-
sented numbers, the most influential lag days can be visually identified 
from the DLNM results. 

Unfortunately, we did not have data on air pollution on a comparable 
temporal and spatial level as the meteorological data. However, in doing 
the sensitivity analysis, we accounted for daily NO2 exposure for a subset 
of LD cases, demonstrating the individual influence of meteorological 
factors on LD independent of air pollution levels, which has rarely been 
addressed in the past. Additional studies covering a broader range of air 
pollutant exposures and stratified by long-term pollutant concentrations 
are needed to further investigate differences in susceptibility to LD 
infection and symptom severity. 

4. Conclusion 

Our study based on individual weather estimates with high spatio- 
temporal resolution confirms that weather conditions such as warm 
temperature and increasing humidity are likely to increase the risk of LD 
case occurrence. At the same time, Switzerland’s summers are setting 
repeatedly new temperature records and the number of rainstorms 
seems to be increasing. Against the backdrop of climate change, there is 
a high risk that the burden of LD will aggravate in the future years. 
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Future research should aim to disentangle the main drivers of LD 
occurrence. In particular, understanding the interplay of temperature 
and humidity with air pollution and other regional characteristics could 
explain hotspots of infection and provide guidance on measures to 
prevent the conducive effect of warm and humid weather on LD inci-
dence. Environmental policies to combat air pollution and climate 
change must be afforded due consideration in order to limit the pro-
gression of LD infections in Europe in the coming years. 
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