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Abstract: The recent decades’ resurgence of bed bugs as a public health concern in industrialized
countries has driven an increased interest on new sustainable insecticide-free methods to monitor
and control these ectoparasites. Current methods of detection rely mainly on visual inspection or
canine scent detection, which are methods that are time-consuming, require experience, are non-
specific or require costly mission repetitions. Volatile organic compounds (VOCs) are considered
an environmentally friendly alternative and a promising approach for bed bug detection. An
overview of the released literature on VOCs, their chemical characteristics and their role in bed bugs’
intra- and inter-species communications allowed us to highlight the identification of 49 VOCs in
Cimex lectularius (23 molecules) and C. hemipterus (26), which are emitted by both sexes during diverse
compartments including aggregation (46), mating (11), defense (4), etc., and all life stages including
exuviae or dead bed bugs as a principal indicator of infestation. The latter has a great importance
for application of these semiochemicals in successful detection and control management of bed
bugs and to prevent their further dispersion. This approach has the advantage of more reliability
compared to conventional detection methods with no need for repeated inspections, household
furniture moving or resident rehousing for bed bugs’ VOC detection, which are commonly performed
by active or passive sampling with absorbing tubes and analyzed by gas chromatography-based
analytical platforms.

Keywords: bed bugs; chemical ecology; semiochemicals; olfactory sensilla; VOC detection;
pheromones

1. Introduction

Bed bugs, Cimex lectularius and C. hemipterus (Hemiptera: Cimicidae), are blood-
sucking insects with a long history of presence in human communities. Since the late 1990s,
there has been a resurgence of bed bugs worldwide particularly in industrialized countries
in which increased international travel together with ineffective chemical insecticides play
major roles in the spread of these ectoparasites [1–3]. Bed bugs are a major concern to
public health and responsible for several clinical and psychological disorders. Bed bug bites
can cause a wide spectrum of dermatological manifestations, varying from erythematous
macules or papules to bullous eruptions [4]. Beside clinical issues, they are responsible
for significant psychological disorders such as nightmares, anxiety, insomnia, paranoia
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and personal dysfunction [5]. In rare cases, bed bug bites in heavily infested dwellings
can be considered a possible cause of chronic blood loss and anemia [6]. Furthermore,
bed bug infestations pose severe challenges in elderly and low-income housing. They
excrete large amounts of liquid feces into human dwellings which may alter the indoor
microbial community composition [7]. These direct health impacts translate into potentially
large social and economic costs [8,9]. Finally, they are responsible for multiple economic
problems that affect cultural and tourism industries [10]. They are commonly found in beds,
mattress, boxspring, walls cracks, crevices, electrical outlets or wooden furniture which
can constitute microhabitats where bed bugs can hide to stay close to humans [2]. Bed
bug infestations commonly occur in private or social dwellings, hospitals, hotels, touristic
residences or public transportation [11]. Due to the nocturnal and discrete behavior of
bed bugs, it is often difficult to find them through observation without additional aid
particularly in the early stages of infestation.

Early detection of bed bugs is a prerequisite key factor in management of bed bug
infestations and in reducing both the costs associated with bed bug management and the
spread of bed bugs from infested dwellings to new locations [12]. Detection of low-level
bed bug infestations is essential for early intervention, eradication and prevention of bed
bugs spreading. Therefore, proper detection reduces management cost and time needed for
control. Despite the importance of early detection, few effective tools and methods exist for
detecting a low number of bed bugs [13,14]. Current methods of detection generally include
(i) visual inspection, (ii) canine scent detection and (iii) monitoring methods/devices to
monitor whether management should be continued or terminated.

Visual inspection is the most common but labor-intensive and time-consuming method,
which requires experience and training. Due to the hidden behavior of bed bugs, visual
inspection is not considered a reliable method, in particular in the case of low numbers of
bed bug specimens in the initial steps of an infestation [12,15].

Canines have been used to detect pests including insects since the mid-1970s. The first
use of dogs in the field was described to detect the odor of gypsy moth (Porthetria dispar)
pheromones and eggs [16]. Afterward, canine detection of bed bugs has been considered
an inspection tool which has been increasingly used in recent years. However, in a few
investigations carried out on the sensitivity of this method to bed bug detection, the results
were significantly controversial. Pfiester [17] stated a 95% sensitivity in detecting small
numbers of bed bugs with no false indications using concealed bugs in hotel rooms, while
Cooper et al. [18] reported a mean detection rate of 44% with a mean false-positive rate
of 15%. The probability of a bed bug infestation being detected by trained canines was
not associated with the level of bed bug infestation. Furthermore, it is a costly mission
requiring repetition [18].

In the recent decades, monitoring methods/devices were the subject of several inves-
tigations, and multiple devices in combination with chemical or biochemical attractants
have been developed for detecting bed bugs [19,20]. Thus, there has been increased inter-
est in developing alternative or supplemental detection/monitoring methods. Currently,
the need for more reliable and cost-effective detection methods is essential in bed bug
infestation management [21,22].

Semiochemicals are the molecules produced by organisms including insects for intra-
(pheromones) or inter-species (allomones, synomones or kairomones) communication.
Volatile organic compounds (VOCs) are a group of semiochemicals in a gaseous phase with
high vapor pressure. They include a large group of various chemical compounds emitted by
living or non-living sources [23]. The resurgence of bed bug infestations and the inefficiency
of chemical insecticides in many parts of the world have led to a renewed interest in VOCs
as an alternative method of detection. The VOCs in bed bug were the subject of several
investigations, mostly published in the last two decades [24–26]. Although they are helpful
in enhancing our knowledge of the role and function of VOCs in bed bugs, some of them are
restricted only to specific in vitro conditions or particular life stages without giving deep
insight on the VOCs and their impact on bed bug compartments. These scattered pieces of
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information with occasionally controversial issues further complicate the puzzle. Moreover,
the essential components of bed bugs’ VOCs need to be better characterized for use in the
detection and management of bed bug infestations. Therefore, exhaustive characterization
of VOCs released by bed bugs can be significantly helpful in developing accurate detecting
methods and in the improvement of bed bug control practices. In this study, we overview
the complete list of VOCs detected in bed bugs, the mechanism of their perception by bed
bugs’ olfactory system and their impact on the bed bugs’ comportment. Moreover, we
further concentrate on the various sampling and analytical methods of VOCs. Finally, we
highlight the significance of VOCs as an ecofriendly alternative and their application as a
promising approach in bed bug management.

1.1. Bed Bugs Chemical Ecology

Bed bug chemical ecology is a foremost concept in better understanding the biology of
bed bugs and their communication with themselves, other insects and the environment
and is critical to bed bug survival in a new environment. It deals with the chemical
mechanisms that regulate both intra- and inter-specific interactions. It includes two major
sections: (i) chemicals involved in the location of the host and (ii) interaction between bed
bugs [27,28].

Bed bugs are able to find their host via multiple cues. Heat and CO2 are the most
attractive cues used by bed bugs during host seeking [29,30], further confirmed by bed bug
trapping studies [31–33]. Chemical cues associated with human bodies were the subject of
several investigations in which over 400 compounds were identified as released by human
skin [34,35]. Among these compounds, only some specific VOCs elicit a response from
hematophagous insects [36]. Several aldehydes and 6-methyl-5-hepten-2-one were the only
chemicals identified from human skin inducing an electrophysiological response from bed
bugs [37]. This less sensibility can be explained in part by fewer odor-binding proteins and
odorant receptors of bed bugs rather than other blood-feeding insects such as kissing bugs
(Rhodnius prolixus) and mosquitoes (Anopheles gambiae, Aedes aegypti), correlating well with
the low number of olfactory sensilla (44) present on bed bug antennae [22]. However, the
interactions among bed bugs are mediated by the release of different chemical cues which
result in diverse vital compartments (e.g., aggregation, alarm, etc.) in the life cycle of bed
bugs [38,39].

1.2. Volatile Organic Compounds (VOCs)

VOCs are generally lipophilic molecules derived from primary or secondary metabolic
process and classified according to molecular structure or functional group. These airborne
metabolites commonly include diverse chemical groups such as aliphatic hydrocarbons,
aromatic compounds, alcohols, ethers, esters, aldehydes, alkenes, ketones or terpenes [40].
They are composed of at least carbon and hydrogen. With high vapor pressure at room
temperature (≥0.01 kPa), they are predominantly present in gaseous form. They have sig-
nificant diffusion power given their volatility at standard temperature and pressure [41–44].
Since they are often emitted from living organisms, they include a number of carbons
ranging from C2 to C20 with molecular weight less than 300 Daltons [45]. Other than
VOCs from living origin (biogenic), there are some other compounds that do not occur
naturally but are instead man-made, formed during industrial processes or combustion [46].
Furthermore, some VOCs are taxon-specific, whereas other VOCs appear to be common to
many different bug families.

VOCs are released by many insects including bed bugs for intra- and inter-specific
communication. They significantly influence reproduction, oviposition, prey location,
defense behavior, aggregation and social organization [47,48]. The production of the
mentioned molecules, depending on their target, varies widely across different insect
orders. Some VOCs are species-specific while some others are general and secreted by
other insect species as well. In bed bugs, VOCs are not only emitted by adult specimens but
also by immature developmental stages. Furthermore, VOCs are emitted from exuviae or
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dead specimens. In an investigation on the VOCs in freshly shed exuviae of nymphal bed
bugs (C. lectularius), four volatile aldehydes including (E)-2-hexenal, 4-oxo-(E)-2-hexenal,
(E)-2-octenal and 4-oxo-(E)-2-octenal were detected [49]. They were secreted from dorsal
abdominal glands with pocket-like structures on the exuviae. Therefore, the presence and
accumulation of bed bug exuviae and their volatized aldehydes might mediate bed bugs’
interaction with their microhabitats and serve as an indicator of bed bug infestation [49].

In insects, the sensilla (sensory hairs) allow perception of signals present in the en-
vironment. They cover the surface of olfactory organs and carry the olfactory sensory
neurons (OSNs). They are mainly located on the antennae and mouthparts but can be
found throughout the body [50,51]. The VOCs present in the environment go into sensilla
through cuticular pores and dissolve into sensillum lymph with embedded OSNs [52]. The
surface of the OSNs include small (10–20 kDa), globular, extracellular target-binding pro-
teins namely odorant binding proteins (OBP) that interact with penetrated VOCs inducing
neuronal activity via fluctuations in the basal firing rate of the OSNs. Therefore, the OBPs
play an important role as VOC transporters, solubilizing VOCs and pheromones from the
surrounding air into the aqueous phase of the odor sensory organ. They transport VOCs
through the sensillum lymph to olfactory receptor neurons (ORNs) which are coated with
olfactory receptor (OR) proteins, located in dendrites of olfactory neurons. These OR pro-
teins can bind to specific VOCs, leading to signal an olfactory response [52]. Therefore, the
ORNs transduce chemical signals into electrical signals, resulting in appropriate behavioral
responses [53].

The antennal sensilla of the bed bugs consist of three types of olfactory sensillum: type
C (grooved peg sensilla), type D (smooth peg sensilla) and type E (hair-like sensilla) [54].
The type D sensillum is further characterized into Dα, Dβ and Dγ. Similarly, the type E
sensillum is categorized into E1 and E2. Each type of the mentioned sensilla has a distinct
response profile to a chemical panel [55]. Structural analysis of the terminal antennal
segment of C. lectularius indicates a low number of olfactory sensilla (44 olfactory sensilla
per antenna) [56]. The olfactory sensilla pattern (number and positions of the sensilla) is
relatively consistent in males and females of C. lectularius [54]. It includes nine type C,
29 type E and one pair of each of Dα, Dβ and Dγ sensilla [57]. A simplified view of the
VOC binding event in bed bugs is shown in Figure 1. It has been designed based on the
findings of articles released recently [58,59].

Sensilla in bed bugs are divided into three categories: olfactory, gustatory and mechano-
sensory [55]. These sensory organs can also be equipped with thermal or water recep-
tors [60]. Thermal receptors have been already identified on the antennal pedicel of bed
bugs [39]. Olfactory sensilla of bed bugs can detect VOCs and their olfactory information.
They are further analyzed in the bugs’ brain and finally result in appropriate behavior.

Among the biogenic VOCs in insects, most of them are secreted as pheromones (for
intra-species communication) and some others as allelomones (inter-species communi-
cation). Pheromones are produced by an insect to perform a specific effect on another
individual of the same species (intraspecific interactions), while allelomones are the com-
pounds mediating interspecific interactions, affecting more insect species other than the
species producing them [52,61]. VOCs are promising and can be used singly or in combina-
tion with other control strategies for monitoring and controlling insect pests in medical and
agricultural systems. Their persistence is affected by a variety of environmental factors,
such as temperature and hygrometry [57]. They may also release in response to an environ-
mental stimulus. Knowledge of the composition of these semiochemicals and the forms in
which they are released into the environment is crucial in using them for various control
applications. These pheromones include aggregation pheromones, alarm pheromones,
oviposition-deterrent pheromones, home recognition pheromones, sex pheromones, trail
pheromones, recruitment pheromones and royal pheromones (Figure 2) [23].
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Aggregation is one of the most important phenomena in bed bugs living in a micro-
ecological habitat. It was first identified by Levinson and colleagues in 1974 [62]. Aggrega-
tion pheromones mediate the formation of aggregation by attracting and/or arresting all
conspecifics to the point of pheromone emission [50]. It provides more efficient resource
use, an increased ability to find mates, protection from natural enemies and/or alter-
ation of the microclimate allowing for protection from environmental conditions [50,63].
Thanks to aggregation, the bed bugs avoid dehydration more effectively than those living
alone [64,65]. This phenomenon probably plays a remarkable role in long-time survival
of bed bugs (sometimes for several months) without taking any blood meal in unsuitable
environments. There are also benefits for juveniles in which the nymphs reared in groups
develop faster than nymphs reared in isolation [66]. Aggregation behavioral response
depends on the density of bed bugs, number of sensilla on the antenna and olfactory



Int. J. Environ. Res. Public Health 2023, 20, 5214 6 of 18

receptor neurons [67,68]. The aggregation pheromone is composed of multiple components
with the concentration of each chemical being critical to the induction of clustering. It is
mediated by VOCs secreted during adult and immature developmental stages as well as
by male and female specimens. Bed bugs sense aggregation pheromones both by olfaction
and contact chemoreception, indicating that the pheromone blend is composed of volatile
and non-volatile components [22]. Based on olfactometry bioassays, no sexual dimorphism
has been reported in the neuronal responses to aggregation pheromones and consequently
in behavioral responses of male and female bed bugs [24,65]. In one of primitive in-
vestigations on the aggregation pheromones in bed bugs, 14 compounds with >100 pg
abundance were detected in gas chromatography–mass spectrometry analyses. Among
them, 10 compounds (nonanal, decanal, (E)-2-hexenal, (E)-2-octenal, (2E,4E)-octadienal,
benzaldehyde, (+)- and (-)-limonene, sulcatone and benzyl alcohol) were reported to be
essential components of the C. lectularius airborne aggregation pheromone [24]. In another
laboratory survey of the bed bugs’ aggregation pheromones, five volatile components
(dimethyl disulfide, dimethyl trisulfide, (E)-2-hexenal, (E)-2-octenal and 2-hexanone) were
detected [65]. (E)-2-hexenal and (E)-2-octenal were reported to be essential components
of bed bugs’ aggregation pheromones. The latter was confirmed in further investigations
carried out by Gries et al. [65], Dery et al. [69] and Olson et al. [70]. Additionally, the bed
bugs’ feces were reported to contain a variety of compounds which serve as a component
of their aggregation pheromones [71]. The fecal matters influence aggregation behavior in
C. hemipterus. (E)-2-hexenoic acid, hexanoic acid, (E)-2-hexenal and hexanal were found
to exhibit aggregation in various stages of bed bugs’ life cycle [72]. In other investiga-
tion on these compounds, it seems that only virgin females responded to the aggregation
pheromone (blood-fed females are not responsive to the aggregation pheromone), prompt-
ing the development of the hypothesis that female bed bugs aggregate less often in order
to avoid traumatic insemination by males [24].

Defense or alarm pheromones are typically known for their beneficial role in allowing
individuals to escape predation leading to rapid dispersal of insects away from a potential
threat. In bed bugs, alarm pheromones were firstly reported by Schildknecht and col-
leagues in 1964 [73] and are commonly used by bed bugs as a chemical defense against
predation [54,60,74]. Alarm pheromones cause increased activity and dispersal in nymphs
and adults. The alarm pheromones of bed bugs have a specific smell secreted from the first
thoracic segment which is easily recognized by the human nose during emission [75,76].
(E)-2-hexenal and (E)-2-octenal were reported as the most abundant alarm pheromones
in adult bed bugs [76]. The nymphs have two additional juvenile-specific compounds in
their alarm pheromone blend: 4-oxo-(E)-2-hexenal and 4-oxo-(E)-2-octenal [38,65]. Alarm
pheromones were demonstrated to be secreted in high doses in which their threshold for
eliciting alarm behavior greatly exceeds the physiological detection threshold [54]. In a
state of distress or alarm, bed bugs expel the contents of their scent glands, which stimulate
locomotion of conspecifics [77]. Another role of alarm pheromones is during mating inter-
actions. Nymphs and males release alarm pheromones to prevent sexual interactions from
other conspecifics [75]. In addition, by using a blend of alarm pheromone, males are able to
signal their identities to other males, avoiding erroneous mating attempts [75]. Finally, the
bed bugs’ alarm pheromones have anti-fungal properties. A study testing (E)-2-hexenal
and (E)-2-octenal against an isolate of Metarhizium anisopliae (Hypocreales: Clavicipitaceae)
resulted in a significant inhibition of conidial viability [78].

Oviposition marking pheromones (OMPs) are deposited by many parasitic and phy-
tophagous insects immediately following egg-laying. These pheromones are recognized by
tarsal and mouthpart receptors of gravid females inspecting potential oviposition sites [43].
They cause a change in egg-laying behavior of their conspecifics so that subsequent eggs
are not deposited in resources that have already been used [79]. This effect results in a
reduced time spent on the marked and previously utilized resource, reduced probability
of oviposition, reduced competition for limited host resources (human or animal) among
broods of conspecific organisms and superparasitism inhibition [79,80]. Although the effect
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of this pheromone depends on the fitness gain of this signal pheromone and the receiver
species, little is known about this pheromone in bed bugs.

Home recognition pheromones are mostly common in social insect colonies. For in-
stance, bee queens produce a scent-mark to enable workers to recognize the colony [81].
The role of this pheromone is largely unknown in the bed bugs. However, it has been
demonstrated that female bed bugs secret marking pheromones that may help them to find
their harborages [64].

Mating (sexual) behavior in bed bugs is a traumatic manner for females, with males
piercing their abdominal cavity directly [82]. On the other side, mating in bed bugs is closely
associated with the completion of blood feeding. During feeding, female bed bugs become
too engorged to protect their exposed abdomen from males. Therefore, bed bug mating
is primarily based on vision, and males are attracted to engorged bugs [1,83]. In many
mating systems, females have a lower optimal mating rate than males and will acquire
adaptations to resist mating. In response, males acquire adaptations to overcome female
mating resistance. Therefore, adult bed bugs release a pheromone to encourage/dissuade
adult males from mating. Females are known to emit chemicals during male copulation
attempts [84]. Experiments involving females with their scent glands have shown that
exposure to a mixture of (E)-2-hexenal and (E)-2-octenal in a 2:5 ratio can deter males from
mating with manipulated females, whereas ratios of 1:1 and 5:4 (male- and female-specific
ratios) did not have the same effect [85]. Although copulation between an adult and a
nymph is reproductively ineffective, bed bug nymphs (C. lectularius) produce a chemical
signal that interrupts the attempts of adult males to mate with them [85].

Trail pheromones are often a multipurpose chemical secretion that leads members of
the same species toward a food source, while representing a territorial mark of an allomone
to other insects outside of the species [86]. Trail pheromones are often incorporated with
secretions of more than one exocrine gland to produce a higher degree of specificity [87].
Considered one of the primary chemical signaling methods in which many social insects
depend on, trail pheromone deposition can be considered as one of the main facets to
explain the success of social insect communication. These pheromones may be secreted
in dejection as well which allows tracing and returning to the nest. Nevertheless, little is
known about the role and function of these pheromones in bed bugs.

Recruitment pheromones induce nestmates to leave the nest. They are not, however,
restricted to the social insects and are found in a variety of taxa, although it has been
understudied in bed bugs [88].

Royal pheromones used by queens in social insects enable workers to recognize and
care for these vital individuals [89]. Bed bugs are gregarious but are not strictly social
insects, and there are no castes in bed bug colonies. However, the role of this pheromone
has been understudied in cimicidae bugs.

In spite of the investigations carried out on VOCs and their impacts on bed bugs, the
role and impact of some of the aforementioned pheromones on these ectoparasites are
largely unknown. Therefore, there is a serious need for further in-depth investigations with
more focus on the role of the mentioned pheromones so that in the following steps they
can be used for bed bug detection and control measures.

1.3. Target-Specific Role of VOCs

The insects of cimicidae (Hemiptera) family are well known for their unpleasant
characteristic odor, which is caused by the release of aldehydes and esters by these bugs.
The types of molecules that these insects release against various stimuli are different. These
compounds are stored in three pairs of dorsal abdominal glands (DAGs) in the nymphs,
whereas they are produced in the metathoracic glands (MTGs) and stored in an orange-
colored reservoir between these glands in the adults [90]. Several studies in the literature
have been reported the chemical composition of the compounds stored in these glands,
but only a few studies have considered the role of these compounds. Each of mentioned
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molecules has a target-specific role in life cycle of bed bugs. Detailed information on the
VOCs and their role so far identified in the bed bugs is given in Table 1.

Table 1. Volatile organic compounds detected in the bed bugs and their known functions.

VOCs Molecular
Formula

Chemical
Group

Bed Bug
Species

Behavioral
Role References

C. hemipterus Aggregation [72]
1 Acetaldehyde C2H4O Aldehyde

C. lectularius Alarm [62]

2 Benzaldehyde C7H6O Aldehyde C. lectularius Aggregation [24]
C. hemipterus Aggregation [72]

3 Butanal C4H8O Aldehyde C. lectularius Aggregation [65]

4 (E)-2-hexenal C6H10O Aldehyde C. hemipterus Aggregation [72]
C. lectularius Alarm [62,65]

5 Heptanal C7H14O Aldehyde C. lectularius Sexual * [91]
6 Hexanal C6H12O Aldehyde C. hemipterus Aggregation [72]

C. lectularius Aggregation [24]
7 Octanal C8H16O Aldehyde

C. lectularius Sexual * [91]
8 Pentanal C5H10O Aldehyde C. lectularius Aggregation [65]

C. lectularius Sexual * [91]
9 Propanal C4H8O Aldehyde

C. hemipterus Aggregation [72]

10 Nonanal C9H18O Aldehyde C. lectularius Aggregation [24]
C. lectularius Sexual * [91]

11 Undecanal C11H22O Aldehyde C. lectularius Sexual * [91]
12 (E)-heptenal C7H12O Aldehyde C. hemipterus Aggregation [72]

C. lectularius Aggregation [24,49,65,70,91]
13 (E)-2-octenal C8H14O Aldehyde

C. hemipterus Aggregation [72,76]
14 (E,Z)-2,4-Octadienal C8H12O Aldehyde C. lectularius Aggregation [24]
15 3-methylthio-propanal C4H8OS Aldehyde C. hemipterus Aggregation [72]
16 4-oxo-(E)-2-octenal C8H12O2 Aldehyde C. lectularius Alarm [76]
17 4-oxo-(E)-2-hexenal C6H8O2 Aldehyde C. hemipterus Aggregation [72]
18 Acetophenone C8H8O Ketone C. lectularius Aggregation [65]
19 Acetone C3H6O Ketone C. lectularius Sexual * [91]

20 Butan-2-one C4H8O Ketone
C. lectularius Aggregation [62]
C. hemipterus Alarm [72]

Aggregation [24]
21 Geranyl acetone C13H22O Ketone C. lectularius Sexual * [91]

22 Sulcatone (6-Methyl-5-
hepten-2-one) C8H14O Ketone C. lectularius Aggregation [24]

23 2-octanone C8H16O Ketone C. hemipterus Aggregation [72]
24 2-hexanone C6H12O Ketone C. lectularius Aggregation [65]
25 Acetamide C2H5NO Acid C. hemipterus Aggregation [72]
26 Hexanoic acid C6H12O2 Acid C. hemipterus Aggregation [72]
27 Phenyl acetic acid C8H8O2 Acid C. hemipterus Aggregation [72]
28 2-methyl propanoic acid C8H16O3 Acid C. hemipterus Aggregation [72]
29 (E)-2-hexenoic acid C6H10O2 Acid C. hemipterus Aggregation [72]
30 (E)-2-octenoic acid C8H14O2 Acid C. hemipterus Aggregation [72]
31 Methyl nonanoate C10H20O2 Ester C. lectularius Aggregation [65]
32 Ethyl octanoate C10H20O2 Ester C. lectularius Aggregation [65]
33 Pentyl hexanoate C11H22O2 Ester C. lectularius Aggregation [65]
34 Benzyl Acetate C6H5CH2OCOCH3 Ester C. lectularius Aggregation [24]

Aggregation [24]
35 (+) Limonène C10H16 Terpene C. lectularius Sexual * [91]

36 (-) Limonène C10H16 Terpene C. lectularius Aggregation [24]
C. lectularius Sexual * [91]

37 Verbenone C10H14O Terpene C. lectularius Aggregation [65]

38 Decanal C10H20O Terpene C. lectularius Aggregation [24]
C. lectularius Sexual * [91]
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Table 1. Cont.

VOCs Molecular
Formula

Chemical
Group

Bed Bug
Species

Behavioral
Role References

Aggregation [24,65]
39 Benzyl alcohol C6H5CH2OH Alcohol C. lectularius Sexual * [91]
40 Diethylene glycol C4H10O3 Alcohol C. hemipterus Aggregation [72]
41 2-ethyl-1-hexanol C8H18O Alcohol C. hemipterus Aggregation [72]
42 2-propyl-1-pentanol C8H18O Alcohol C. hemipterus Aggregation [72]

43 2-isopropyl-5-methyl-
cyclohexanone C10H16O2 Alcohol C. hemipterus Aggregation [72]

44 Tetradecane C14H30 Hydrocarbon C. hemipterus Aggregation [72]
45 Azulene C10H8 Hydrocarbon C. hemipterus Aggregation [72]
46 Pyrrolidin-2-one C4H7NO Amid C. hemipterus Aggregation [72]
47 Tridecane C13H28 Alkane C. hemipterus Aggregation [72]

48 Dimethyl disulfide C2H6S2
Organic Sulfur

Compound C. lectularius Aggregation [65]

49 Dimethyl trisulfide C2H6S3
Organic Sulfur

Compound C. lectularius Aggregation [65]

*: VOCs detected during sexual activity.

1.4. VOC-Based Sampling and Analyzing Methods

Sampling and analyzing of bed bug VOCs are rather difficult tasks, largely due to the
low quantities released and rapid dispersion into the air. The development of techniques
that can rapidly detect these volatile compounds in bed bugs is therefore of great interest.
Regarding the presence of VOCs in a gaseous state, the gas-based sampling and detecting
methods are valuable as they operate in the gas phase. There are two sampling methods
of VOCs:

“Active sampling” is the most common sampling procedure in which the VOCs are
collected on an adsorbent tube using an air sampling pump. All released semiochemicals
are deposited onto sorbents (e.g., porous polymers, active fibers or coated materials), and,
once collected, they are subsequently desorbed using organic solvents or thermal protocols.
These techniques consist of the confinement of a portion of VOC-containing atmosphere
inside a recipient, e.g., canister, cuvette, flask or a special bag. The VOC collection can,
therefore, be performed by means of a pump or ventilator, trapping them in a sorbent
material. However, diverse factors should be considered for avoiding the loss of some
compounds, such as temperature, relative humidity, light exposure, containing recipient
surface and sorbent materials or the control of reactive species (e.g., oxidizers), therefore
to ensure reliable measurements [68]. “Passive Sampling” is another sampling method
based on controlled diffusion of vapors from ambient air into the adsorbent pad of the
Diffusive Sampler (called a Diffusive Badge). However, it is less accurate than active
sampling. The collected VOCs are subsequently analyzed through analytical platforms.
There are a wide range of gas analytic technologies of VOCs released by bed bugs. Gas
chromatography–mass spectrometry (GC-MS) is a common analytical method used for
VOCs detection [92,93]. However, this reference method of detection is expensive and
time-consuming and thus requires training and expertise. Consequently, inexpensive,
portable and user-friendly methods are required. A list of sampling methods used for
identification of bed bugs’ VOCs is given in Table 2.

The detection and measurement of bed bug VOCs in an infested area are commonly
performed by portable air samplers possessing absorbing tubes, e.g., Tenax (for VOCs and
SVOCs). The VOCs are adsorbed through the mentioned tubes and afterward desorbed
either thermally (Tenax) or by elution (DNPH) and then analyzed by GC-MS/FID or
HPLC [94]. Currently, gas chromatography coupled with a high-resolution detection
mode (e.g., flame ionization (FID), electron capture (ECD), photoionization (PID) or mass
spectrometry (MS)) is commonly used for detection, identification and quantification of
bed bug VOCs [90].
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Table 2. Various trapping methods used for bed bugs’ VOCs detection.

Trapping Technology Adsorbent Polymer References

SPME (Solid Phase Micro Extraction) DVB/CAR/PDMS [25,70]
NTD (Needle Trap Device) HaySep Q divinyl benzene [25]
TFME (Thin Film Microextraction) PDMS [25]
Active adsorbent sampling Poropak Q trap elution [24]
Active adsorbent sampling TENAX TA/Carbograph 5D * [91]
SPME Carboxen/PDMS [49]
Active adsorbent sampling TENAX GR [65]
SPME Carboxen/PDMS [70]
Liquid extraction (water/ethanol) NA [62]
Active adsorbent sampling TENAX GR [76]
Methanol extraction NA [72]
SPME Carbon WR/PDMS [26]

*: PTR-MS; NA: Not available.

1.5. VOC Applications

Regarding toxicity and increasing cases of bed bug resistance against chemical insecti-
cides, the integrated pest management (IPM) systems recently operate more by limiting
applications of chemical insecticides and placing more focus on the use of naturally occur-
ring control methods [92,95,96]. With infestations being difficult to identify and eliminate
in the early stages, there is a need for a monitoring tool that could be used for surveillance,
evaluation of intervention success and even mass trapping. Tremendous progress has
been made in understanding insect olfaction mechanisms, leading to increased interest in
how insects are affected behaviorally by VOCs and raising opportunities for applying this
knowledge in integrated pest management (IPM) strategies [97].

Bed bugs, under specific conditions such as stress, emit specific odors. These odors
are comprised of VOCs which, depending on their volatility, persist in a gaseous state. The
exuviae and excretion of dead and living bed bugs together possess diverse VOC profiles,
providing a foundation for successful detection of bed bug infestations. The most common
application of VOCs in bed bug management is often based on the use of VOCs guiding
the bed bugs during their search for blood-feeding or mating [19,98]. Bed bug aggregation
pheromones are also considered a promising attractant for use in the monitoring, treatment
efficacy evaluation, mass trapping efforts and management of bed bugs [99]. Adhesive or
pitfall traps coupled with these attractive VOCs are passive monitoring techniques that
can greatly contribute to reducing bed bug infestations [19,94,100]. Active monitors are
equipped with heat and/or chemical attractants that draw the bed bugs and therefore
increase the success of detection [19]. The combination of a sugar–yeast monitor with a
chemical lure (e.g., nonanal, L-lactic acid, 1-octen-3-ol and spearmint oil) is an affordable
and effective tool for monitoring bed bugs [101]. This monitor is especially useful for
monitoring bed bugs where a human host is not present.

In addition to attractive VOCs, the traps containing large amounts of some sexual or
aggregation VOCs are placed in the field practices to confuse bed bug males and females,
making it difficult for them to find each other to mate [89].

On the other side, chemical repellents as alternatives to insecticides are now playing
a significant role in pest control [102,103]. Some terpene-derived chemicals that are both
effective and eco-friendly for insect control have been used extensively to interrupt the
host-seeking process of the blood-feeding arthropods [104,105]. Harraca et al. [85] tested
the olfactory responses of C. lectularius to nearly 30 chemicals including five chemical
repellents. Liu et al. [106] conducted a systematic study characterizing the electrophysio-
logical responses of olfactory sensillum in the common bed bug to 52 chemicals reported as
repellents for different insects.
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2. Materials and Methods

To explore the detailed characteristics of the VOCs detected in bed bugs, a narrative
review was performed on the released literature, including research articles, books and
dissertations according to the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guideline [107]. The searches were performed in Scopus, PubMed,
Science Direct, ProQuest, Web of Science, Springer, MEDLINE and Google Scholar in
five languages (English, French, German, Portuguese and Spanish) without restriction
by publication date. The relevant articles that met the mentioned criteria were selected.
Duplicated articles and those with unrelated topics were excluded. A total of 34 articles
published on the mentioned subjects were gathered. Among them, 12 articles that met the
study criteria were selected (Figure 3). Detailed information of the investigations performed
on the VOCs in the released literature is given in Table 3.
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Table 3. Detailed profiles of investigations carried out on the bed bugs’ volatile organic compounds
in the literature.

Author(s)
Entomological Criteria Analysing

Method Molecules IdentifiedSpecies Life Stage Sex Fed/
Unfed

Field/
Laboratory

Levinson
et al. [62]

C.
lectularius

Larva &
adult ♂& ♀ Fed NA GC-MS Acetaldehyde; Butan-2-one;

(E)-2-hexenal; Sulcatone (6-Methyl-5-hepten-2-one)

Siljander
et al. [24]

C.
lectularius

Larva &
adult ♂& ♀ Fed Laboratory GC-MS

(E)-2-hexenal; Benzaldehyde; Benzyl alcohol; (E,Z)-2,4-Octadienal;
Sulcatone (6-Methyl-5-hepten-2-one); Octanal; Limonène;

Nonanal; Benzyl Acetate; Decanal; Geranyl acetone
((E)-6,10-Dimethyl-5,9-undecadien-2-one)

Liedtke
et al. [76]

C.
hemipterus

Nymph &
adult ♂& ♀ Fed Laboratory GC-MS (E)-2-hexenal; 4-oxo-(E)-2- hexenal; (E)-2-octenal;

4-oxo-(E)-2-octenal

Kilpinen
et al. [91]

C.
lectularius Adult ♂& ♀ Fed Laboratory GC-MS

Acetone; Propanal; (E)-2-hexenal; Hexanal; Benzaldehyde; Benzyl
alcohol; Heptanal; (E)-2-octenal; Sulcatone

(6-Methyl-5-hepten-2-one); Octanal; Limonène; Nonanal; Decanal;
Undecanal; Geranyl acetone

((E)-6,10-Dimethyl-5,9-undecadien-2-one)

Eom et al.
[25]

C.
lectularius All stages ♂& ♀ NA Field GC-MS

Phenyl-1,3,3-trimethylindan; Heptadecane;
2,6,10,14-Tetramethylpentadecane; Hexyl cinnamic aldehyde;

Octadecane; Isopropyl myristate; Galaxolide;
7-Methyl-Z-tetradecen-1-ol acetate; 2-Methylhexadecan-1-ol;

Methyl hexadecanoate; Dibutyl phthalate; Ethyl hexadecanoate;
Isopropyl palmitate; 8-Octadecenal; Methyl

4-hydroxyoctadecanoate; Z-5-methyl-6-heneicosen-11-one

Mendki
et al. [72]

C.
hemipterus Nymph - NA Laboratory GC-MS

Acetaldehyde; Acetamide; Pyrrolidin-2-one; 2-methyl propanoic
acid; (E)-2-hexenal; Hexanal (E)-2-hexenol; 3-methylthio-propanal;
Benzaldehyde; Diethylene glycol;(E)-heptenal; (E)-2-hexenoic acid;

Hexanoic acid; (E)-2-octenal; Dimethyl trisulfide; Azulene;
2-octanone; 2-ethyl-1-hexanol; 2-propyl-1-pentanol; Phenyl acetic

acid; (E)-2-octenoic acid; 2-isopropyl-5-methyl-cyclohexanone
(menthone); Tridecane; Tetradecane

Gries et al.
[65]

C.
lectularius

Egg, nymph,
adult &
exuviae

♂& ♀ Fed &
ufed NA GC-MS

Butanal; Pentanal; Dimethyl disulfide; (E)-2-hexenal; Hexanal;
2-hexanone; Benzaldehyde; Benzyl alcohol; Acetophenone;

(E)-2-octenal; Dimethyl trisulfide; Verbenone; Methyl nonanoate;
Ethyl octanoate; Pentyl hexanoate

Choe et al.
[49]

C.
lectularius

Nymph &
adult ♂& ♀ Fed Laboratory GC-MS (E)-2-hexenal; 4-oxo-(E)-2- hexenal; (E)-2-octenal;

4-oxo-(E)-2-octenal

Olson
et al. [70]

C.
lectularius Adult ♂& ♀ Fed Field GC-MS (E)-2-hexenal; (E)-2-octenal

Zhang
et al. [108]

C.
lectularius

Egg, nymph
& adult ♂& ♀ Fed Laboratory GC-MS (E)-2-hexénal; (E)-2-octénal (adult); Eucalyptol (egg)

Weeks
et al. [99]

C.
lectularius

Larva &
adult ♂& ♀ Fed Laboratory GC-EAG

Hexanal; Heptanal; Benzaldehyde; (RS)-1-Octen-3-ol; Octanal;
3-Carene; β-Phellandrene; (E)-2-Octenal; (3E,5E)-Octadien-2-one;

Nonanal; (E)-2-Nonenal; 2-Decanone; Decanal; Dodecane;
Nonanoic acid; 2-(2-Butoxyethoxy) ethyl acetate; (E)-2-Undecenal;

(S)-Germacrene D

Cannon
et al. [26]

C.
lectularius Egg & adult NA Fed Laboratory GC-MS

Acetone; (2-aziridinylethyl) amine; toluene; octane; hexanal;
N,N-dimethylformamide; ethylbenzene; m-xylene; 2-héxanal;
p-xylene; heptanal; α-pinene; 2-butoxyethanol; 4-ethyloctane;

5-methylnonane,2,2,6-trimethyloctane;
2-trifluoroacetoxydodecane; decane; 2-tridecyl ester
methoxyacetic acid; α-methylstyrene; benzaldehyde;
2,2-dimethyldecane; 2,2,4,6-6-pentamethylheptane;

3-8-dimethylundecane,
α-methyl-α-[4methylpentyl]oxiranmethanol;

1-(2-methoxy-1-methylethoxy)-2-propanol; 2,2-dimethyl-1-octanol;
2,7,10-trimethyldodecane; 5-ethyl-2,2,3-trimethylheptane;

3,6-dimethylundecane; 2,6,8-trimethyldecane; 2-ethyl-1-hexanol;
2,3,4-trimethyldecane; 2,2,7,7-tetramethyloctane;

3,7-dimethyldecane; 4-methylundecane; undecane 2-octenal;
2-hexyl-1-octanol; 6-methyloctadecane;

4-ethyl-2,2,26,6-tetramethylheptane;
N-[5-(2-hydroxyphenyl)-1,3,4-thiadiazol-2-yl]benzamide; nonanal;
5-methylundecane; 2,6,10-trimethyldodecane; 3-methylundecane;

9-methylheptadecane; (E)-2-dodecene; dodecane;
Z,Z-2,5-pentadecadien-1-ol; 2-methyl-1-hexadecanol;
1-methyl-4-(1-methylethyl)-cyclohexanol; tridecane;

2-azido-2,4,4,6,6,8,8-heptamethylnonane; tetradecane;
3-Hydroxy-2,2,4-trimethylpentyl 2-methylpropanoate;
3-(isobutyryloxy)-1-isopropyl-2,2-dimethylpropyl-2-

methylpropanoate

GC-MS: Gas chromatography-Mass spectrometry; SPME: Solid phase micro extraction; GC-EAG: Gas
chromatography-electroantennography; NA: Not available.
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3. Discussion

An overview of the released literature on the VOCs in bed bugs allowed us to explore
12 studies conducted on C. lectularius and C. hemipterus as human ectoparasites. Most
of the investigations were carried out on C. lectularius (10 studies) compared to two on
C. hemipterus. Laboratory strains (eight studies) were the most frequent specimens that
underwent detection for VOCs.

So far, 49 volatile molecules have been detected in bed bugs. They included 17 alde-
hydes, seven ketones, five alcohols, six acids, four esters, four terpenes, two organic
sulfure compounds, two hydrocarbons, one Amid and one Alkane. Of the 49 detected
molecules, 26 molecules were identified in C. hemipterus, and the remaining were identified
in C. lectularius.

Concerning C. lectularius, aldehydes (13 molecules), ketones (six molecules) and ter-
pens (six molecules) were the most frequent components of analyzed VOCs, while for
C. hemipterous, aldehydes (10 molecules) and acids (six molecules) were the most abundant
substances reported in the processed specimens. To the best of our knowledge, no acid or
hydrocarbon were reported in C. lectularius. Similarly, ester and terpene molecules were
not detected in C. hemipterus. Aldehydes were the common molecules detected in both
C. lectularius and C. hemipterous specimens with (E)-2-hexenal and (E)-2-octenal substances
being the most abundant ones (ratio 3:1 in adults and 3:7 in 4th and 5th instar nymphs) [24]
(Tables 1 and 3).

Based on earlier studies on the VOCs in bed bugs, females emit approximately equal
amounts of (E)-2-hexenal and (E)-2-octenal, whereas males emit much more (E)-2-hexenal
rather than (E)-2-octenal [76], while according to another investigation, there was no
significant difference in the amount of (E)-2-hexenal and (E)-2-octenal emitted by female
and male specimens [64]. In addition, it was shown that the males release approximately
five times more (E)-2-hexenal and (E)-2-octenal than females and at least 50 times more than
juveniles [24]. Furthermore, four aldehydes of (E)-2-hexenal, 4-oxo-(E)-2-hexenal, (E)-2-
octenal and 4-oxo-(E)-2-octenal were consistently detected in bed bugs’ exuviae regardless
of the instars from which the exuviae were obtained [38]. Conversely, dead bed bugs and
exuviae had the lowest VOC profile which indicates a key distinction between the VOCs
released from living and dead bed bugs [38].

Regarding the role of VOCs, they are commonly characterized using the olfactome-
try system. Olfactometers are used to gauge the VOC detection threshold of substances
in a precise and controlled manner. To measure intensity, olfactometers introduce one
or multiple VOCs as a baseline to find the examined specimens’ behaviors [109]. The
life stage of bed bugs, their VOC concentrations, the distance between a VOC source
and bed bugs and the temperature are important factors affecting olfactometric assess-
ment [55,84,110,111]. Herein, we provided a detailed list of VOCs detected in both sexes
of bed bugs (Table 1). Of the 49 detected VOCs, molecules with an aggregation role
(46 molecules) were the most reported ones in processed bed bugs followed by sexual
(11) and alarm (4) substances. Some reported VOC roles in the examined specimens were
controversial because for the same molecule(s), diverse roles were reported simultaneously.
For instance, (E)-2-hexenal and (E)-2-octenal were identified as essential components of the
bed bugs’ aggregation pheromones [84]. Other than their aggregation role, it is actually
clear that these volatiles have additional functions as defensive chemicals that are released
in high concentrations [1,54,112,113]. The latter commonly occurs when bed bugs are
attacked by predators (e.g., bats or ants) [54], are encountered with high concentrations of
carbon dioxide [76] or are encountered with undesirable mating activities [84,91]. It seems
that the function type (aggregation versus defense) of these VOCs largely depends on the
released concentration. Therefore, (E)-2-hexenal and (E)-2-octenal serve as multifunctional
pheromone components that are attractive/arrestant at low concentrations but repellent at
high concentrations [109]. Acetaldehyde (C2H4O), (E)-2-hexenal (C6H10O) and Butan-2-one
(C4H8O) were also reported with aggregation and alarm roles [60,70,72]. Furthermore,
Octanal (C8H16O) and Geranyl acetone (C12H22O) were detected as aggregation and sex-
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ual VOCs [22,99]. Although there is no description explaining these incompatibilities in
reported roles, they may be linked to the bed bug species analyzed (C. lectularius versus
C. hemipterus), the VOC concentrations detected, lifecycle (egg, larva, nymph and adult),
sex (male versus female) or the analyzing condition of processed bed bugs.

VOC processing methods/devices are another essential element in bed bug detection.
According to the literature, various methodologies were used for VOC detection in bed bugs.
Among them, GC-MS was the most frequent analyzing method used (Table 3). Depending
on the type of trapping method (absorbent) and device, they were used for detection,
identification and quantification of various VOCs. Despite the great advantages of the
aforementioned methods, they have some drawbacks which limit their application in the
field, such as being bulky, expensive and needing expertise. Therefore, developing sensitive
hand-held portable devices involving gas chromatography analyzers that do not have the
mentioned limitations is a fundamental step in the on-site detection of bed bugs in infested
locations. This has the advantages of rapidity, simplicity and avoiding multiple inspections.
Regarding the lack of need for resident rehousing or moving due to the detection of bed
bug VOCs which are performed by air sampling, this practice represents an attractive
method from the users’ point of view. Furthermore, re-inspection of the previously infested
location by VOC analysis to continue or terminate the treatment is rather rapid, which
therefore makes this detecting intervention economical. This promising approach can be
used in industries, hotels, hospitals, touristic centers, etc., for quick diagnosis of probable
infestation and subsequent control management strategies against bed bugs.

4. Conclusions

The communication between bed bugs themselves and with their environment is
mediated by chemical interactions especially through VOCs released by an individual
and received by another one. Such chemical-based communication is intimately involved
with various behaviors of bed bugs, such as defense, mating or aggregation. Bed bugs
emit various VOCs with different concentrations depending on their sex and life stages.
While the number of bed bug specimens may have an effect on the amount of VOCs
available for detection, developing the analyzing methods which are able to detect, identify
and quantify the VOCs is of great importance for bed bug management. A literature
review of the investigations carried out on VOC semiochemicals allowed us to explore
12 studies conducted on C. lectularius (10 studies) and C. hemipterus (2) mostly performed on
laboratory strains (8 studies). We also highlight the identification of 49 VOCs in C. lectularius
(23 molecules) and C. hemipterus (26) which are emitted by both sexes during diverse
compartments including aggregation (46), mating (11), defense (4), etc., and all life stages
including exuviae or bed bug death as principal indicators of infestation. The aldehydes
(17 molecules) were the common molecules detected in both C. lectularius and C. hemipterous
specimens with (E)-2-hexenal and (E)-2-octenal substances as the most abundant ones. They
were detected and analyzed by various methodologies. Among them, GC-MS was the most
frequent analyzing method used. This identification of VOCs responsible for chemical
communication of bed bugs allows for their further application in control of bed bugs singly
or in integration with other control strategies and can be involved in control management
strategies against these ectoparasites in private (e.g., individual or collective dwellings) or
public (e.g., hotels, hospitals and transportation) settings and other human dwellings.
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