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ABSTRACT

Lubrication theory is used to investigate how weakly bound particles can be transported away from the vicinity of the wall when two spatially
periodic rough surfaces are sheared relative to one another at constant velocity U while immersed in fluid. The aim is to model what could
be an important process during decontamination of hands by washing and is motivated by Mittal et al. [“The flow physics of COVID-19,”
J. Fluid Mech. 894, F2 (2020)] who remark “Amazingly, despite the 170þ year history of hand washing in medical hygiene, we were unable
to find a single published research article on the flow physics of hand washing.” Under the assumption that the roughness wavelength 2p=k
is large compared with the spacing of the surfaces, a, the lubrication approximation permits closed-form expressions to be found for the
time-varying velocity components. These are used to track the motion of a particle that is initially trapped in a potential well close to one of
the surfaces, and experiences a drag force proportional to the difference between its velocity and that of the surrounding fluid. Complications
such as particle-wall hydrodynamic interactions, finite size effects, and Brownian motion are ignored for now. Unsurprisingly, particles
remain trapped unless the flow driven by the wall motion is strong compared to the depth of the trapping potential well. Perhaps less obvious
is that for many starting positions the process of escape to large distances from the wall takes place over a large number of periods 2p=kU ,
essentially because the no-slip boundary condition means that fluid velocities relative to the wall are small close to the wall, and thus the
velocities of particles along or away from the wall are also small. With reasonable estimates for the various dimensional parameters, the
escape times in these cases are found to be comparable in magnitude to the washing times recommended in hand washing guidelines.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0060307

I. INTRODUCTION

Few would doubt that good hand hygiene can help control the
spread of disease and minimize risks of infection, even if airborne
transmission may be more important in the COVID-19 context.2–5 So
it is surprising to read that the physical processes involved in hand
washing have, apparently, not been studied by fluid mechanicians; see
Sec. IVC of Mittal et al.1 Maybe the very familiarity, simplicity, and
technology-independence of the act of washing ones hands means that
it goes unnoticed and unquestioned outside specialist health and
development communities, or perhaps the issue is the very lack of
prior literature, in which case this paper, which puts forward a simple
fluid mechanical model for a process of particle removal during hand
washing, might provide a starting point.

Guidelines on good hand washing practices can be found in
WHO6 and a collection of videos of hand washing in Lulla et al.7 It is
clear from the WHO guidelines that thoroughness is necessary to
achieve good results (the guidelines detail a seven step sequence to

ensure all parts of the hand are addressed), and that time and relative
motion are important (the hands are rubbed together throughout, and
the guidelines imply that around 5 s should be spent on each step). A
quick splash under the tap is certainly not enough, which suggests that
dislodging or deactivating unwanted material is not trivially easy. The
remainder of this paper sets out a fluid mechanical model for particle
removal that explains why this is the case.

More information is available in the literature about the chemical
processes involved in the deactivation of bacteria and viruses, perhaps
because cleaning products are the foundation of multi-billion dollar
global businesses, giving a commercial incentive for understanding-
based innovation. See Kampf and Kramer8 for a review of pathogens
and control agents, Golin et al.9 and Singh et al.10 for information on
formulation of alcohol-based hand sanitizer and its mode of action on
coronaviruses, and Poon et al.11 for a COVID-focused survey of the
soft matter science involved. In very broad terms, it seems that suitable
molecules, usually amphiphilic, are able to incorporate themselves into
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the membranes surrounding a bacterium or virus, leading to disrup-
tion of the membrane or its function, and thence destroying the patho-
gen or damaging it sufficiently that it is no longer a threat. Given this
picture, the key fluid mechanical process is getting the chemical agent
to the location of the pathogen, i.e., transport of an externally supplied
molecule to a target (initially) on the surface of the hand. The fluid
mechanics of convection-diffusion taking place in the flow occurring
in the inter-hand region during washing is thus highly relevant.

It is unlikely that the target referred to in the previous paragraph
is, in the COVID-19 context, a simple unadorned virus particle. More
likely it is a mixed entity resulting from the aging of a deposited
exhaled droplet containing viruses, water, salts, lipids, and biopoly-
mers,11–13 with further complications arising from re-wetting when
the hand washing medium is applied. This adds a significant uncer-
tainty to the quantification of the target size and the magnitude of the
forces holding it in place.

In the light of the previous remarks, we study the flow in the
fluid-filled gap between the surfaces of relatively moving hands, the
transport of chemical species in this gap, and the processes whereby a
particle initially on one of the hand surfaces is removed into the bulk
fluid. Since there is little prior fluid-mechanical literature, it is reason-
able to make a start by employing a simple mathematical model.
Complications can be added later as the need is revealed from consid-
eration of the results of these initial investigations. The lack of quanti-
tative data on various parameters, such as the strength of virus-surface
interaction forces, is another reason to avoid excessive complexity and
to try to identify features that are not sensitively dependent on param-
eter values.

Hence, we shall here study flow and transport in a simple geome-
try, chosen so that the fluid flow problem can be solved analytically. The
hands are modeled as two rough walls, closely spaced to one another,
with roughness wavelengths long compared to the width of the fluid-
filled gap. This allows the fluid flow in the gap to be calculated using the
time-honored lubrication approximation, permitting simple closed-
form expressions to be given for the velocity components. This velocity
field is then used to track the trajectories of particles taking account of
short-range forces between particle and hand and assuming the simplest
possible slip-related drag form for the hydrodynamic interaction
between flow and particle. Particles are taken to be attracted to the wall
by a short-range force and to be repelled at very close approach so as to
avoid interpenetration, hence, in the absence of flow they would be
trapped in a potential well close to the wall.

Despite the simplicity, this model exhibits some interesting fea-
tures, for example, the existence of a threshold relative velocity
between the hands below which particles are not removed from the
potential well binding them to the wall, and allows these features to be
explained in a quantitative fashion. Also, the model explains why
removal of particles from the wall region requires a significant time,
when measured in units of 2p=kU which is the time for the surfaces to
translate by one roughness wavelength, thus perhaps providing a
mechanistic justification for the recommendations in the guidelines on
the time to be spent during hand washing. The long time required is a
direct consequence of the smallness of fluid–solid relative velocities
near the wall, which in turn is a consequence of the no-slip boundary
condition.14

It might be objected that direct solid–solid mechanical interac-
tions at points of close approach of the surfaces may play a role in

particle removal, and this possibility is not considered here. This is
true, but since not every point on a pair of rough surfaces can experi-
ence direct interaction, unless the surfaces are so deformable that they
become conformant, the present purely hydrodynamic model must
have some relevance even if it is not complete.

The remainder of this paper is organized as follows: Sec. II details
the study geometry, and Reynolds and P�eclet numbers are evaluated
to identify the controlling process dynamics. The equations governing
fluid flow are given in Sec. III, and solved under the approximation
that gap width is small compared to the length scale of axial variations.
The forces on a virus particle and the equation governing its motion
under the combination of flow and wall-attraction forces are specified
in Sec. IV, and a dimensionless group measuring the relative impor-
tance of wall attractions to flow forces is derived. Particle trajectories
are computed and displayed, in Sec. V, and it is found that particles
are not removed from the wall region unless flow forces are strong
enough to overcome the wall attraction. An order of magnitude expla-
nation is given for the critical value of the dimensionless parameter,
and the timescale of particle removal. Finally, key conclusions and
areas where the model might usefully be extended or revised are dis-
cussed in Sec. VI.

Despite its age15 it seems that the lubrication approximation still
has something useful to give in new contexts, and so is likely to be
with us for some time yet.

II. GEOMETRY AND BASIC PARAMETERS

The hands are modeled as two rough surfaces in relative motion
separated by a film of fluid. The situation is taken to be two dimen-
sional, with x being the coordinate in the axial direction and y in the
transverse. The upper surface is located at y ¼ hþðx; tÞ, the lower at
y ¼ h�ðx; tÞ. In order to simplify the velocity calculation we shall
demand both symmetry about x¼ 0 such that h�ðx; tÞ ¼ �hþð�x; tÞ
and also periodicity such that hþðx þ ð2p=kÞ; tÞ ¼ hþðx; tÞ for all x
(and similarly for h�ðx; tÞ of course). Simple forms are used here,

h6ðx; tÞ ¼ a 6 1þ g
2

� �
þ sin k x7

Ut
2

� �" #
: (1)

It will be assumed throughout that axial roughness wavelength scale,
2p=k, is much greater than the transverse gap width length scale, a, so
that the parameter ka� 1. The relative velocity of the walls in the x
direction, U, is taken to be constant in time.

The relative importance of advection of suspended or dissolved
material relative to diffusion is measured by the P�eclet number
Pe ¼ aU=D, whereD is the particle or molecular diffusivity. For mod-
est sized surfactants D ¼ Oð10�9Þm2=s, while D ¼ kT=6pdl for a
solid particle of radius d, so when d ¼ Oð50 nmÞ, characteristic of
a virus particle,11 T ¼ 300K and the suspending fluid viscosity
l ¼ 10�3 Pa s then D ¼ 4� 10�11 m2=s. Taking U ¼ Oð10�1Þm=s,
and a ¼ Oð10�5 mÞ which is shown in Sec. III B to be reasonable,
then Pe lies in the range 103 to 2� 104. In the geometry considered,
for both surfactants and virus sized particles, diffusion effects are
therefore weak compared with advection. At least for a first investiga-
tion, simple non-Brownian particle tracking should yield some useful
insights. The ratio between the virus diameter and the film thickness,
for the parameters given, is 2d=a ¼ 10�2, introducing another small
geometrical parameter into the problem.
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The Reynolds number is Re ¼ aU=�, where � is the kinematic vis-
cosity of the fluid filling the gap between the walls, and for the parame-
ters given above Re ¼ Oð1Þ. When ka� 1 the appropriate measure of
inertia effects is the modified Reynolds number16 kaRe, which will be
small provided ka < 10�1 (and the same factor acts on Pe in lubrication
geometry). Smaller values for a will reduce Re further. Neglect of inertia
is probably justifiable in a first-look context, but maybe not beyond, and
certainly not if axial length scales are comparable with film thicknesses.
Much depends on the value assumed for a, which is dictated by a com-
bination of surface roughness and the interaction of applied loads and
surface deformability, and as such is hard to estimate accurately.
Turbulence, which would significantly enhance mixing, can probably be
ruled out, however, since at least a three order of magnitude increase in
a would be required, taking it to a value rather large for hand washing,
but convective chaos resulting from geometrical irregularity and changes
inU remains a possibility even at low Reynolds number.

Writing uslip for the magnitude of the difference between the par-
ticle and fluid velocities, the particle slip and shear Reynolds numbers
are Reslip ¼ duslip=� and Reshear ¼ d2U=a� and are smaller than the
bulk Reynolds number Re by factors of ðd=aÞðuslip=UÞ and ðd=aÞ2,
respectively. Since uslip=U � 1, and d=a ¼ Oð5� 10�3Þ; Reslip
� Oð5� 10�3Þ, and Reshear ¼ Oð2:5� 10�5Þ. This implies that forces
arising from fluid inertia have a negligible effect on particle motion
when compared to drag.17

Where appropriate dimensionless variables, denoted with a hat,
will be used in the sequel. Lengths will be scaled with a, velocities with
U, and times with a/U so that x̂ ¼ x=a, etc.

III. FLUID FLOW
A. Governing equations and boundary conditions

Under the assumption that fluid inertia effects are negligible, the
fluid velocity u ¼ ðu; vÞ and pressure p satisfy

r � u ¼ 0; lr2u ¼ rp; (2)

where l is the fluid viscosity. Making the lubrication approximation
Eq. (2) becomes

@v
@y
¼ � @u

@x
; l

@2u
@y2
¼ Gðx; tÞ; (3)

and is subject to boundary conditions

uðx; h6; tÞ ¼ 6
U
2
; vðx; h6; tÞ ¼ 0: (4)

The axial volume flux Q at any axial position, x, is

Qðx; tÞ ¼
ðhþ
h�

uðx; y0; tÞdy0; (5)

and differentiating this expression and using 3(a) and 4(b) we find

@Q
@x
¼ U

2
@hþ
@x
þ @h�

@x

� �
: (6)

Then, integrating with respect to x, and fixing the constant of integra-
tion by observing that Qð0; tÞ ¼ 0 as a result of symmetry together
with the requirement that there is no injection or removal of fluid as
x ! 61, it follows that

Q ¼ U
2
ðDhþ þ Dh�Þ; (7)

where Dh6 ¼ h6ðx; tÞ � h6ð0; tÞ.

B. Velocity field and pressure gradient

Equation (3) is easily integrated to obtain

u ¼ U
y � hþþh�

2

hþ � h�
þ G
2l
ðy � hþÞðy � h�Þ (8)

¼ U Aðx; tÞy2 þ Bðx; tÞy þ Cðx; tÞ
� �

: (9)

Upon integrating Eq. (8), we find that

Q ¼ � G
12l
ðhþ � h�Þ3: (10)

Equating this expression to Eq. (7), it follows that the pressure gradient
is

G ¼ �6lU Dhþ þ Dh�
ðhþ � h�Þ3

: (11)

The tangential shear stress exerted on the lower wall by the fluid is

l
@u
@y
ðx; h�Þ ¼ lU

1
hþ � h�

þ 3
Dhþ þ Dh�
ðhþ � h�Þ2

" #
;

the first term coming from the linear shear flow and the second from
the parabolic pressure-driven contribution. On the upper wall, the
same terms appear but the sign of the first contribution is reversed.
The order of magnitude of wall shear stresses is OðlU=aÞ. Using the
expression for G Eqs. (8) and (9) implies

A ¼ �3Dhþ þ Dh�
ðhþ � h�Þ3

;

B ¼ 1
hþ � h�

þ 3
Dhþ þ Dh�
ðhþ � h�Þ3

ðhþ þ h�Þ;

C ¼ � hþ þ h�
2ðhþ � h�Þ

� 3
Dhþ þ Dh�
ðhþ � h�Þ3

hþh�:

The transverse component of velocity, v, is obtained from (8) by inte-
grating Eq. (3) subject to (4), giving

v ¼ U �Ax

3
ðy3 � h3�Þ �

Bx

2
ðy2 � h2�Þ � Cxðy � h�Þ

� �
; (12)

where Ax ¼ @A=@x, etc. Finally, it may be verified by differentiation
that the streamfunction is

w ¼ U � h�
2
þ A

3
ðy3 � h3�Þ þ

B
2
ðy2 � h2�Þ þ Cðy � h�Þ

� �
; (13)

where the fluid velocity components are given by u ¼ @w=@y and
v ¼ �@w=@x.

Figure 1 illustrates instantaneous streamlines at a sequence of
times spanning half a period, as seen in the laboratory frame in which
the two solid boundaries are moving in opposite directions. Fluid
moves with the boundaries in the regions near the maxima of the
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upper boundary and the minima of the lower boundary, and in the
band on either side of the center of the gap fluid is pushed away from
the forward moving or leading edges of the sinusoids, and sucked in
toward the trailing edges. At some times, but not all, there are front
and rear stagnation points on the boundaries, which shift position
along the boundaries as these move relative to one another.

Figure 2 shows streamlines at the same times but in a frame of
reference moving with the lower boundary. The density of streamlines
is low in the part of the gap near the lower boundary, which indicate
that fluid fluxes are low there, i.e., the fluid is mainly being carried
along with the wall. However, streamlines linking points on the lower
boundary are visible at some times, but not all, which indicates that
there are sometimes locations where material can more easily detach
from, or conversely be deposited onto, the lower wall of the gap.

Figure 3 further visualizes the flow field by tracking the concen-
tration of a non-diffusing passive tracer initially present only in a finite
width strip against the lower boundary. The 2D tracer advection
equation is solved using dimensional splitting on a 512� 1024 regular

grid, with each 1D sweep solved using a second order MUSCL-
Hancock scheme; see Toro,18 Chaps. 13 and 16. The fluid velocity is
taken to be ðu; vÞ ¼ ð6U=2; 0Þ when y lies outside the interval
½h�ðx; tÞ; hþðx; tÞ�. The results have relevance to the particle tracking
calculations of the rest of this document since P�eclet numbers there
are large, but care should be taken in interpreting these results for this
purpose since the width of the initial tracer concentration strip in the
computations is relatively large compared to the range of attraction of
the particle trapping force.

From these plots of concentration in the laboratory frame, it can
be seen that the tracer is spread along and across the gap by repeated
creation of filaments, which originate at the points of close approach
of the two surfaces and are subsequently stretched along and trans-
ported across the channel. Each close approach event generates a new
filament, which is further elongated in the axial direction during each
subsequent period, thus distributing the tracer into an ever increasing
set of thin layers, and hence generating large transverse concentration
gradients which in turn will generate large transverse diffusive fluxes,
so bringing about effective cross-gap transport of tracer. At the same
time, some tracer is contacted immediately with the other wall of the
channel at the instants of close approach, provided the initial layer
thickness is comparable to the minimum spacing between surfaces.
Also, slow movement of tracer takes place within the layer on the
lower wall, as is evidenced by variations in thickness and concentration
of the layer at points away from the highest point of the lower wall.
These observations suggest that even at zero Reynolds number in a
comparatively simple geometry complicated Lagrangian trajectories
can result, with different time scales depending on whether processes
occur near a wall or in the bulk of the fluid. The motion of particles
convected in the flow may therefore have surprising complexity. In the
context of mass transport, when the lower surface represents a bar of
soap and the upper surface a dirty hand, the filiation process described
above could be an important mechanism generating a good rate of
surfactant transport from source to the place where it is needed,
despite the overall high P�eclet number.

In the symmetrical geometry assumed here h�ð0; tÞ ¼ �hþð0; tÞ,
and so Dhþ þ Dh� ¼ hþ þ h�, and thus Gð0; tÞ ¼ 0. Furthermore,
the assumed symmetry implies that G is an odd function of x, which for
spatially periodic G implies that its integral over a period is zero. This in
turn implies that the pressure p(x, t) is periodic in x. So in a finite length
geometry the pressure can be thought of as the sum of a zero mean peri-
odic component, forced by the local geometry, and a constant value set
by matching to conditions at the ends of the gap. As argued in Sec. IVH
of Batchelor,16 this constant pressure can be large, OðlU=ka2Þ, a factor
of 1=ka larger than the wall shear stresses, see Appendix for an explicit
calculation. It follows that if the two surfaces are pushed together by an
external force per unit area P, then, assuming this force is balanced by
lubrication pressure alone and solid–solid contacts play no part, the
order of magnitude of the thickness of the fluid-filled gap must be
a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lU=kP

p
. Taking P to be of order a few times 102 N=m2 in

hand washing, and 2p=k � 10�3 m, with other parameters as above,
then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lU=kP

p
� 10�5 m justifying the value of a assumed above.

Furthermore, ka � 10�1 which is indeed small.

IV. PARTICLE MOTION

We consider a particle of radius d, with instantaneous position
XðtÞ, which interacts with the wall through a force given by the

FIG. 1. The streamfunction w at t ¼ 2pð0; 0:25; 0:5; 0:75Þ=kU (plots ordered left
to right and top to bottom). Parameter values: g ¼ 0:1; ka ¼ 0:1.

FIG. 2. The streamfunction in a frame of reference moving with the lower wall,
wþ ðUy=2Þ, at t ¼ 2pð0; 0:25; 0:5; 0:75Þ=kU. Parameters as in Fig. 1.
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gradient of potential /. The total force on the particle must vanish,
and so, by virtue of the linearity of the Stokes equations and boundary
conditions,

0 ¼ �r/þ Rf
X u½ � � Rp

X � _X ; (14)

where Rf
X is the linear functional linking the force on a stationary par-

ticle at X to the fluid velocity field, and Rp
X is the resistance tensor for a

particle at X moving through stagnant fluid, in both cases in the pres-
ence of the channel boundaries Cox.19 Consistent with the small slope
assumption underlying the use of lubrication theory, the particle-wall
interaction potential is taken to be

/ ¼ b
l

y � h�

� �m

� l
y � h�

� �n
" #

; (15)

with l the characteristic distance from the wall over which the potential
is significant. Then, assuming Rf and Rp to be isotropic and to take
Stokes’ law form for a particle of radius d, i.e., that the particle is small
not too close to the wall,

_X ¼ u� 1
6pdl

r/; (16)

where the fluid velocity and potential gradient are evaluated at ðX; tÞ.
This equation is easily stepped forward in time numerically so as to
find particle trajectories.

The treatment of the hydrodynamic force on the particle in
Eq. (16) is approximate. In particular, no account is taken of the con-
sequences of proximity to the bounding wall on the forces on the par-
ticle.20 This is an acceptable approximation when the distance of the
particle from the wall is large compared with d, but is questionable
when the particle is close to the wall. Broadly speaking wall effects cre-
ate an additional resistance to particle motion, and so cause particles
to lag behind the local fluid flow when the distance of the particle
from the wall is not large compared to its diameter. Hence, expressions
which take no account of the presence of nearby walls are likely to
overestimate particle velocities, and in the present context this is likely
to translate into an overestimate of the ease with which particles can
be removed from the near-wall region. In principle, it is possible to
include finite particle size wall interactions in the calculation using the
results of the paper of Cox cited above,21 but in practice the significant
additional complication seems likely only to cause quantitative
changes rather than induce new qualitative phenomena.

Inertial lift is also neglected, but since as argued in Sec. II the par-
ticle Reynolds numbers are small, lift will be a much smaller force
than drag and inconsequential except perhaps on long time scales.
However, there is a further subtlety in the present context since it is
the drag associated with wall-normal velocity components, rather than
wall-parallel, which drives particle removal, and so inertial lift forces
should be compared with drag associated with wall-normal motions.

FIG. 3. Concentration of a non-diffusing tracer at times t ¼ 4pð0; 0:25; 0:5; 0:75; 1; 1:25; 1:5; 1:75; 2Þ=kU. Parameters as in Fig. 1. The concentration is initially zero every-
where except in a strip of width 0:2a adjacent to the lower boundary.
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Since in the lubrication approximation wall-normal velocities are
smaller than wall-parallel by OðkaÞ, neglect of lift requires that particle
Reynolds numbers be small compared to ka rather than to 1, which is
indeed the case for the parameter values assumed here. See Magnaudet
et al.22 and Ekanayake et al.23 for recent studies of the hydrodynamic
forces on a particle near a wall with particle motion or undisturbed flow
in the parallel direction and including inertial effects, and Maxey and
Riley24 for a discussion of (small) contributions from unsteadiness and
velocity profile curvature to the force on a particle in unbounded fluid.

The interaction between virus particle and surface must in reality
be far more complex than that represented by Eq. (15). Extremely
detailed information at the molecular level is now becoming avail-
able,25 but here a lumped description at the continuum scale is
required. Fortunately, recent advances in mesoscopic simulation26,27

hold out the possibility of elucidating the various modes and processes
of virus-surface interaction, and estimation of force, range, and mobil-
ity parameters at the appropriate scale.

It follows from Eq. (16), using (15), that the dimensionless
parameter

B ¼ b
6pdlUl

(17)

measures the relative strength of wall attraction to hydrodynamic
forces when velocity differences between particle and fluid are of order
U. For convenience, we introduce k ¼ l=a and d ¼ d=a so that
B ¼ b=ð6pa2lUdkÞ. The small parameters k and d are likely to be
comparable in magnitude, with k > d.

Since axial velocities at a distance OðlÞ from the wall are expected
to be of order Ul=a ¼ kU in a frame of reference moving with the
wall (when hþ � h� ¼ OðaÞ and @u=@yjwall 6¼ 0), and in lubrication
theory transverse velocities are smaller than axial by a factor of wall
slope ka, we might infer from Eq. (16) that particles cannot be pulled
out from the trap by transverse flow if B exceeds OðkakÞ. We shall
find below that this criterion over-estimates the strength of hydrody-
namic forces and weaker potentials can in fact hold particles trapped;
the underlying cause is the significant time and space variations of the
fluid velocity.

V. RESULTS

Figure 4 shows a computed trajectory with ka ¼ g ¼ 0:1 and
B ¼ 10�7 where the particle travels to the right, in a frame of refer-
ence moving with the lower wall, from its initial position on the lower
wall to the point of escape from the trapping potential. A further calcu-
lation, not illustrated here, indicates that the particle remains trapped

FIG. 4. In the main figure, an example particle trajectory, XðtÞ (blue line, starting from the red dot at t¼ 0), plotted in a frame of reference moving with the lower wall for
0 � t � 3ð2p=kUÞ, withB ¼ 10�7; ka ¼ 0:1; k ¼ 0:02, m¼ 12, n¼ 6, and other parameters as Fig. 1. The black line is the channel lower wall, and the three dashed lines
are the locations of the potential minimum, the point of maximum attractive force, and the outer edge of the potential. The particle travels in the direction of positive x to the
point of escape form the wall attraction. In the two insets, a close-up of the trajectory at escape, and an extension of the calculation to t ¼ 30ð2p=kUÞ.
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near the wall when starting from this position if B ¼ 2� 10�5.
Figure 5 shows a trajectory where the particle travels to the left from
its starting position on the lower wall to the point of escape, again with
ka ¼ g ¼ 0:1 andB ¼ 10�7.

In both cases, the particle moves far from the wall and into bulk
fluid once it has escaped from the potential well, although after suffi-
ciently long times it is re-trapped (and presumably eventually re-
released since the flow field is periodic in time, so a similar release-trap
scenario will play out over and over again).

The locations of release from the trap differ in the two figures. In
Fig. 4, the particle becomes free, in the sense of moving to a position
where the magnitude of the potential has fallen to one tenth of its
value at the minimum, at a point just downstream (i.e., to the right) of
the peak of the wall profile at X þ Ut=2 	 17, whereas in Fig. 5 the
release occurs near the midpoint between the maximum and mini-
mum of the wall profile at X þ Ut=2 	 35. In the first case, release
seems to be associated with the strong shearing flow occurring when
the wall profiles coincide in such a way as to give a narrow channel
gap, while in the second case the release process appears to be associ-
ated with weaker flows in the sheltered region in the lee of the rough-
ness element. Other simulations, not reported here, indicate that
release only occurs at one of these two positions and in these ways.
From examination of a variety of results, it appears that particle release

involves first transport along the wall to a position where conditions in
the vicinity are favorable for release to occur, and then motion with a
component normal to the wall driven by the local flow field, which
may occur over many periods, during which the particle is transported
to and beyond the edge of the potential well.

The particle is not constrained always to move in y < 0.
Parameter values and starting point can be chosen so that the trajec-
tory crosses the channel centerline, as illustrated in Fig. 6, although
such cases seem difficult to find. Presumably it is important for the
particle to arrive at the top of the roughness at just the right moment.

In order to help identify the processes responsible for particle
untrapping, Fig. 7 maps out the positions of various significant wall
shear stress values, in the frame of reference moving with the lower
boundary. The triangles in Fig. 7 give the location of the maximum,
and the upper left subplot shows the values, of the shear stress on the
lower wall at various times. It can be seen that the shear stress maxi-
mum is located near the maximum of h� and takes its greatest value
when the tips of the upper and lower boundary roughness elements
are directly opposite one another at kUt=2p ¼ 0:5. The squares in
Fig. 7 show the time-varying positions of points of zero wall shear
stress, which are significant in the present context since they are associated
with stagnation points. Green squares show positions where @2u=
@x@yðx; h�; tÞ < 0, and red squares where this derivative is positive.

FIG. 5. Particle trajectory, XðtÞ (blue line, starting from the red dot at t¼ 0), plotted in a frame of reference moving with the lower wall for 0 � t � 120ð2p=kUÞ with parame-
ters as Fig. 4. The initial location of the particle is such that it travels toward negative x to the point of release. In the lower inset, the calculation is extended to
t ¼ 160ð2p=kUÞ.
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At a small distance above the lower wall fluid flows toward the green
points and away from the red points, and there are corresponding
outward flows in the vicinity of the green points and inward flows in
the vicinity of the red. The lower right subplot shows the values at
various times of the wall-normal velocity at a position close to the
potential minimum and its time average. Positive time average wall

normal velocities are only found to the right of the maximum of h�
and are mainly generated at times between kUt=2p ¼ 0:5 and
kUt=2p ¼ 1. To summarize, the largest instantaneous positive value
of normal velocity is found just downstream of the maximum of h�,
while positive time-average normal velocity is found to the right of
the maximum. Hence, fast particle escape processes are likely to
occur near the maximum, and slow escape processes playing out
over many periods will occur to its right. At any instant particles will
move parallel to the wall away from the red squares, and toward the
green, so sweeping them toward the maximum of h� if they start a
short distance to its left, or sweeping them into the region behind the
maximum if they start to its right or far to its left.

It is interesting to compare the critical values of B for release to
occur, either from near the “top of the roughness,” as in Fig. 4,
BcritðtopÞ, or from a “rear stagnation point,” as in Fig. 5, BcritðrearÞ,
see Table I, where values of kka and some other scaling groups are
given for purposes of comparison. Both critical values indeed scale
with kka over the range examined but it is clear that in both cases the
numerical coefficient linking kka and Bcrit is small, which suggests
that the argument of Sec. IV needs refinement. The critical value for
detachment is much larger when the process occurs at the top of the
roughness than on the rear flank, because hydrodynamic forces are
significantly amplified at the peak when the gap between the surfaces
is at its narrowest and so are able to overcome the attraction of stron-
ger potentials.

FIG. 6. A case where the particle crosses to the other side of the channel,
0 � t � 45ð2p=kUÞ. B ¼ 10�6 and other parameters are as in Fig. 4.

FIG. 7. In the main plot, a map of special points of uðx; h�; tÞ, for ka ¼ g ¼ 0:1. Blue triangles indicate the point of maximum positive wall shear stress; squares points,
where @u=@yðx; h�; tÞ ¼ 0, red for positive @2u=@x@yðx; h�; tÞ, green negative; the vertical cyan line marks the position of the maximum of h� throughout. In the upper left
subplot, @û=@ŷ at t ¼ 2pð0; 0:25; 0:5; 0:75Þ=kU (blue, red, green, and mauve). In the lower right subplot, ûnðh� þ l; tÞ at the same instants, with the additional light brown
line showing the time average ûn .

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 081908 (2021); doi: 10.1063/5.0060307 33, 081908-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


The scaling argument given in Sec. IV can now be refined, using
ideas gleaned from the simulations. The first aspect to address is that it
is the velocity component normal to the duct wall in a frame of refer-
ence moving with the wall, un ¼ v � uþ U

2

	 

@h�=@x, which is

important for particle removal from the trap, rather than the trans-
verse component v, the main contribution of which is simply to cause
particles to terrain-follow the wall. General considerations based on
r � u ¼ 0 and the no-slip boundary condition lead to the estimate
un ¼ Oðð@2ut=@t@nÞy¼h�ðy � h�Þ2Þ at most, where ut is the tangen-
tial component of velocity (equal to leading order in lubrication theory
to the axial component, u) and the partial derivatives are in the tan-
gential and normal directions. Hence, the normal velocity at a distance
OðlÞ from the wall is Oðk2a2cxÞ, where cx is the axial rate of change of
the shear rate at the wall. Explicit calculation using Eq. (8) shows that
c receives a contribution OðU=ðhþ � h�ÞÞ due to the local shearing
motion of the channel walls, together with a contribution
OðUðDhþ þ Dh�Þ=ðhþ � h�Þ2Þ from the pressure gradient driven
flow. Away from the narrowest point of the gap, these contributions
are comparable and lead to cx ¼ OðkU=aÞ, and thence
un ¼ OðkaUk2Þ. On the other hand, near the narrowest point of the
gap, when g is small, it might seem that the pressure gradient contri-
bution to c dominates since it scales with the inverse square of the gap
width; however, this is misleading since with the present highly sym-
metrical geometry its numerator vanishes when the two surfaces are
exactly aligned and is small at times close to that instant, and so the
correct estimate is cx ¼ OðkU=gaÞ, whence un ¼ OðkaUk2=gÞ.

The simulations show that untrapping near the top of the rough-
ness occurs within a single period 2p=kU , which requires that the par-
ticle normal velocity to be at least OðkUl=2pÞ. This is not in
contradiction with the estimate given at the end of the previous para-
graph for un provided 2pk=g ¼ Oð1Þ, and so untrapping by this
means it requires distances of approach between the surfaces compara-
ble to the range of the potential well.

For particle detachment to occur, the hydrodynamic drag forces
on the particle must exceed the wall attraction force, and so
6pdlvslip 
 Oðb=lÞ, with 0 < vslip < un, the lower velocity bound
arising because some slip is needed for a drag force to be generated,
and the upper because positive particle velocity is required for the par-
ticle to move outward. Since little time is available for top detachment
in a single encounter between roughness peaks, it seems reasonable
that vslip can only be a small fraction of un, say vslip ¼ aun with a
numerically small but not so small that inadequate drag forces will be
generated. Combining with the previous estimates we estimate
BcritðtopÞ ¼ Oðakak2=gÞ, and picking a ¼ 1=20 gives good agree-
ment in Table I.

In contrast, the simulations indicate that detachment at the rear
is a gradual process taking place over many periods. The particle

oscillates along the tangential direction once it has drifted to the vicin-
ity of the release point and moves outward under the action of a small
but non-zero time-averaged component in un. There is no constraint
that the particle’s normal velocity be large enough to complete removal
in a finite number of periods; it just has to be positive on average. This
is difficult to analyze because the order of magnitude estimates made
so far relate to typical values of un, and since un is observed in the sim-
ulations to take both positive and negative values its time average may
be very different, and potentially much smaller, than its typical value.
Since the two surfaces are in steady shear relative to one another the
time average of un can be non-zero and had the surfaces been in oscil-
lation, causing the flow to periodically reverse, a zero time-average
would be expected since Stokes flows are reversible. In the absence of a
quantitative estimate, we assume that the time average of un, denoted
un , is equal to some small fraction e of the typical value
un ¼ OðekaUk2Þ. On this basis, assuming vslip 	 un , and then balanc-
ing time-average drag against attraction, we obtain
BcritðrearÞ ¼ Oðekak2Þ. Taking e ¼ 10�2 matches the observed values
ofBcritðrearÞ, see Table I. The dimensional time for a particle to move
a distance of order l away from the wall is l=un ¼ Oða=ekakUÞ,
which, for e ¼ 10�2 and the parameter values given in Sec. II is 20 s,
which is of the same order of magnitude as the hand washing time rec-
ommended by the WHO.6

VI. CONCLUSIONS AND REMARKS

Particle tracking calculations and solutions of the tracer advec-
tion equation in the time-varying gap between relatively moving cor-
rugated surfaces show that surprisingly complicated particle
trajectories and concentration distributions can arise in a compara-
tively simple geometry at low Reynolds number. Tracer layers near a
wall can be pulled out into a series of thinning layers through pro-
cesses occurring at the points of close approach between the surfaces,
and the resulting large transverse concentration gradients may drive
significant cross-gap diffusive transport even though bulk P�eclet num-
bers are large. This mechanismmay be important for effective delivery
of soap from a bar to the surface of dirty hands.

Bound particles are removed from all points on the corrugated
surface provided B is less than a critical value, Bcrit. The scalings of
Table I imply that ðba=6pdlUl3kÞcrit � 1. So narrower gaps (i.e.,
smaller a), steeper roughness (larger k), faster relative movement of
surfaces or larger fluid viscosity, all mean that particles can be dragged
off the wall despite larger values of b. Larger particles (i.e., larger values
of d, or larger values of l) are also easier to remove in this sense. In all
cases, the key effect is a strengthening of hydrodynamic drag forces,
either directly, e.g., via the U, d and l dependences in Stokes’ law, or
indirectly through the increase in normal velocity with distance from
the wall.

TABLE I. Ranges containing Bcrit as ka is varied, with k ¼ 0:02; g ¼ 0:1, m¼ 12, and n¼ 6.

ka BcritðtopÞ BcritðrearÞ kak kak2=20g kak2=100

0:2 ð3:5; 4:0Þ � 10�5 ð6:0; 6:5Þ � 10�7 4� 10�3 4� 10�5 8� 10�7

0:1 ð1:75; 2:0Þ � 10�5 ð2:75; 3:0Þ � 10�7 2� 10�3 2� 10�5 4� 10�7

0:01 ð1:75; 1:9Þ � 10�6 ð2:875; 3:0Þ � 10�8 2� 10�4 2� 10�6 4� 10�8

0:001 ð1:5; 2:0Þ � 10�7 ð3:0; 3:1Þ � 10�9 2� 10�5 2� 10�7 4� 10�9
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The timescale for particle removal through the gradual process
acting away from points of close approach of the surfaces is
Oða=ekakUÞ, and for the parameter values chosen here this turns out
to be rather close to the time recommended empirically to be spent in
routine hand washing. The numerical closeness is fortuitous, since it is
dependent on the precise values of film thickness and surface rough-
ness parameters chosen, but the order of magnitude correspondence is
suggestive that the hydrodynamic theory developed here has captured
something of the essentials of the process.

If B is not large, then particles are not removed but rather are
swept to accumulate at a point on the downstream side of each rough-
ness element (a “rear stagnation point”).

With the present model of particle-surface interaction, particles
roll or slide along in the potential well until they possibly reach a posi-
tion where hydrodynamic forces are strong enough to pull them out of
the trap. If the interaction sites on the wall had been represented as a
set of discrete points, we might expect the particle either to be bound
to a fixed site ifB were large, or at smaller values to hop along the wall
from site to site under the action of tangential hydrodynamic forces
until reaching a point were hydrodynamic forces acting normal to the
wall were strong enough to free it completely and then transport it a
significant distance from the wall. A shared feature of the simulation
results reported here is that transport along the wall is a faster process
than transport normal to the wall, reflecting the character of the near-
wall velocity components. We might expect similar behavior to be
observed in a discrete binding center model, and so again particle
transport to positions far from the wall will occur only at special points
on the surface.

As a crude summary conclusion, it seems fair to say that particle
transport into the bulk is not an easy process since it requires a thresh-
old flow strength to be exceeded, requires particles to be transported
along the surface to certain discrete points where the flow conditions
are particularly favorable for particle untrapping to take place, and for
most starting positions, it requires a time extending over many periods
of motion of the periodic surfaces for completion.

The consequences of chemical attack on a virus particle by active
ingredients introduced during the washing process have not been con-
sidered here. Several possibilities deserve study: the trapping attraction
between the particle and the surface might be weakened, and the rate
of transport of an active ingredient to the surface will set the timescale
over which this process may be important; the particle may be deacti-
vated without leaving the surface, and again transport rates from bulk
to surface must play a key role; finally, chemical deactivation of a parti-
cle could occur within the bulk fluid after the particle has been
detached from the wall, which involves an interplay between the time
scales for release from trapping, for transport of particles away from
the wall, and for transport of active ingredients toward the wall. The
clothes laundry literature is clearly of relevance.28

The present model implies that there if wall force attractions are
too strong, i.e., if B is too large, then particles are not removed from
wall into the bulk fluid and remain trapped. Although in practice this
hard threshold will be smeared by a distribution of roughness geome-
try parameters or trap strengths, we might conjecture that deactivation
of particles by action of surfactant whilst they are still bound to the
wall will not display threshold effects in U, because there is no thresh-
old in the advection-diffusion equation for surfactant transport other
than that arising from effects associated with total time of exposure,

whereas deactivation occurring after particles has been detached into
the bulk will show a U threshold. This may be a way of telling the two
possibilities apart.

Throughout, the geometrical parameters a (average channel
width) and ga (channel width at points of closest approach of rough-
ness elements) have been taken as given, but they can seem to influ-
ence the critical value of wall attraction strength b in the scalings
found in Table I. In reality, we might expect both of these length scales
to be determined dynamically through an interaction between the
applied normal load, the lubrication pressure developed in the gap as
the surfaces slide relative to one another, and potentially also the
deformability of the bounding surfaces. Calculation of the pressure
within the gap, by integration of Eq. (11), requires specification of how
the surfaces diverge from one another as x ! 61. Once this is done
and the pressure is found, it can be integrated to give the normal force
on each surface, and then the time-averaged result equated to the
applied load so as to obtain an equation determining a.

Incorporation into the analysis of elastohydrodynamic effects29,30

would be an interesting extension of this calculation, since deformations
are likely to occur at the narrowest points of the gap so changing the
geometry and flow field in a region where particle detachment occurs.
The author’s elastohydrodynamic calculations, which it is hoped will be
reported in a future publication, indicate that surface deformations flat-
ten the channel walls and thus reduce the magnitude of flows acting to
lift particles from the surface; all other factors held constant, and it is
therefore harder to remove a particle from a deformable wall.

Experimental inputs, on roughness characteristics, gap widths,
and surface compliances, as well as on particle-surface interaction
forces, are all vitally important if any of these ideas are to be tested
through quantitative predictions. A more sophisticated representation
of surface roughness31 is also desirable, as is extension to geometries
and flows in three dimensions.

Finally, the model used here for fluid forces on a suspended parti-
cle near a rigid wall is crude and should be improved to include the
consequences of wall proximity, and perhaps also fluid inertia and par-
ticle Brownian motion.

Use of lubrication theory has allowed a first examination of an
interesting and practically relevant phenomenon, through nothing
more difficult than numerical integration of a small ODE system on a
laptop computer. It seems to the author that this time-honored
approximation can still be put to good use.
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APPENDIX: LOAD CARRYING PRESSURE

For symmetrical, but not necessarily periodic, functions h6

satisfying h�ð�x; tÞ ¼ �hþðx; tÞ, the pressure within the fluid-
filled gap is found from Eq. (11) as

pðx; tÞ � p0 ¼ 6lU
ð1
x

hþ þ h�
ðhþ � h�Þ3

dx0; (A1)

where p0 is the pressure in the surrounding fluid within which the
moving surfaces are immersed. Suppose

hþðx; tÞ ¼ a 1þ g
2

� �
þ a

k x � L� Ut
2

� �� �q
; x 
 Lþ Ut

2

0; x < Lþ Ut
2
:

8>>><
>>>:

(A2)

Then for jxj < Lþ Ut
2 ,

pðx; tÞ � p0 ¼
6lU
a2

ð1
0

ðkx0Þq

ðð2þ gÞ þ ðkx0ÞqÞ3
dx0

¼ 6lU
a

1
ka

gðqÞ
ð2þ gÞ3=2

; (A3)

where

gðqÞ ¼
ð1
0

xq

ð1þ xqÞ3
dx: (A4)

This integral is given in Gradshteyn and Ryzhik;32 for example,
gð2Þ ¼ p=16 and so when g� 1 the numerical coefficient in
Eq. (A3) is 6p=211=2 	 0:42.
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